Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
10 kB
(*<*)
\<comment>\<open> ********************************************************************
* Project : AGM Theory
* Version : 1.0
*
* Authors : Valentin Fouillard, Safouan Taha, Frederic Boulanger
and Nicolas Sabouret
*
* This file : AGM Remainders
*
* Copyright (c) 2021 Université Paris Saclay, France
*
******************************************************************************\<close>
theory AGM_Remainder
imports AGM_Logic
begin
(*>*)
section \<open>Remainders\<close>
text\<open>In AGM, one important feature is to eliminate some proposition from a set of propositions by ensuring
that the set of retained clauses is maximal and that nothing among these clauses allows to retrieve the eliminated proposition\<close>
subsection \<open>Remainders in a Tarskian logic\<close>
text \<open>In a general context of a Tarskian logic, we consider a descriptive definition (by comprehension)\<close>
context Tarskian_logic
begin
definition remainder::\<open>'a set \<Rightarrow> 'a \<Rightarrow> 'a set set\<close> (infix \<open>.\<bottom>.\<close> 55)
where rem: \<open>A .\<bottom>. \<phi> \<equiv> {B. B \<subseteq> A \<and> \<not> B \<turnstile> \<phi> \<and> (\<forall>B'\<subseteq> A. B \<subset> B' \<longrightarrow> B' \<turnstile> \<phi>)}\<close>
lemma rem_inclusion: \<open>B \<in> A .\<bottom>. \<phi> \<Longrightarrow> B \<subseteq> A\<close>
by (auto simp add:rem split:if_splits)
lemma rem_closure: "K = Cn(A) \<Longrightarrow> B \<in> K .\<bottom>. \<phi> \<Longrightarrow> B = Cn(B)"
apply(cases \<open>K .\<bottom>. \<phi> = {}\<close>, simp)
by (simp add:rem infer_def) (metis idempotency_L inclusion_L monotonicity_L psubsetI)
lemma remainder_extensionality: \<open>Cn({\<phi>}) = Cn({\<psi>}) \<Longrightarrow> A .\<bottom>. \<phi> = A .\<bottom>. \<psi>\<close>
unfolding rem infer_def apply safe
by (simp_all add: Cn_same) blast+
lemma nonconsequence_remainder: \<open>A .\<bottom>. \<phi> = {A} \<longleftrightarrow> \<not> A \<turnstile> \<phi>\<close>
unfolding rem by auto
\<comment> \<open>As we will see further, the other direction requires compactness!\<close>
lemma taut2emptyrem: \<open>\<tturnstile> \<phi> \<Longrightarrow> A .\<bottom>. \<phi> = {}\<close>
unfolding rem by (simp add: infer_def validD_L)
end
subsection \<open>Remainders in a supraclassical logic\<close>
text\<open>In case of a supraclassical logic, remainders get impressive properties\<close>
context Supraclassical_logic
begin
\<comment> \<open>As an effect of being maximal, a remainder keeps the eliminated proposition in its propositions hypothesis\<close>
lemma remainder_recovery: \<open>K = Cn(A) \<Longrightarrow> K \<turnstile> \<psi> \<Longrightarrow> B \<in> K .\<bottom>. \<phi> \<Longrightarrow> B \<turnstile> \<phi> .\<longrightarrow>. \<psi>\<close>
proof -
{ fix \<psi> and B
assume a:\<open>K = Cn(A)\<close> and c:\<open>\<psi> \<in> K\<close> and d:\<open>B \<in> K .\<bottom>. \<phi>\<close> and e:\<open>\<phi> .\<longrightarrow>. \<psi> \<notin> Cn(B)\<close>
with a have f:\<open>\<phi> .\<longrightarrow>. \<psi> \<in> K\<close> using impI2 infer_def by blast
with d e have \<open>\<phi> \<in> Cn(B \<union> {\<phi> .\<longrightarrow>. \<psi>})\<close>
apply (simp add:rem, elim conjE)
by (metis dual_order.order_iff_strict inclusion_L insert_subset)
with d have False using rem imp_recovery1
by (metis (no_types, lifting) CollectD infer_def)
}
thus \<open>K = Cn(A) \<Longrightarrow> K \<turnstile> \<psi> \<Longrightarrow> B \<in> K .\<bottom>. \<phi> \<Longrightarrow> B \<turnstile> \<phi> .\<longrightarrow>. \<psi>\<close>
using idempotency_L by auto
qed
\<comment> \<open>When you remove some proposition \<open>\<phi>\<close> several other propositions can be lost.
An important lemma states that the resulting remainder is also a remainder of any lost proposition\<close>
lemma remainder_recovery_bis: \<open>K = Cn(A) \<Longrightarrow> K \<turnstile> \<psi> \<Longrightarrow> \<not> B \<turnstile> \<psi> \<Longrightarrow> B \<in> K .\<bottom>. \<phi> \<Longrightarrow> B \<in> K .\<bottom>. \<psi>\<close>
proof-
assume a:\<open>K = Cn(A)\<close> and b:\<open>\<not> B \<turnstile> \<psi>\<close> and c:\<open>B \<in> K .\<bottom>. \<phi>\<close> and d:\<open>K \<turnstile> \<psi>\<close>
hence d:\<open>B \<turnstile> \<phi> .\<longrightarrow>. \<psi>\<close> using remainder_recovery by simp
with c show \<open>B \<in> K .\<bottom>. \<psi>\<close>
by (simp add:rem) (meson b dual_order.trans infer_def insert_subset monotonicity_L mp_PL order_refl psubset_imp_subset)
qed
corollary remainder_recovery_imp: \<open>K = Cn(A) \<Longrightarrow> K \<turnstile> \<psi> \<Longrightarrow> \<tturnstile> (\<psi> .\<longrightarrow>. \<phi>) \<Longrightarrow> B \<in> K .\<bottom>. \<phi> \<Longrightarrow> B \<in> K .\<bottom>. \<psi>\<close>
apply(rule remainder_recovery_bis, simp_all)
by (simp add:rem) (meson infer_def mp_PL validD_L)
\<comment> \<open>If we integrate back the eliminated proposition into the remainder, we retrieve the original set!\<close>
lemma remainder_expansion: \<open>K = Cn(A) \<Longrightarrow> K \<turnstile> \<psi> \<Longrightarrow> \<not> B \<turnstile> \<psi> \<Longrightarrow> B \<in> K .\<bottom>. \<phi> \<Longrightarrow> B \<oplus> \<psi> = K\<close>
proof
assume a:\<open>K = Cn(A)\<close> and b:\<open>K \<turnstile> \<psi>\<close> and c:\<open>\<not> B \<turnstile> \<psi>\<close> and d:\<open>B \<in> K .\<bottom>. \<phi>\<close>
then show \<open>B \<oplus> \<psi> \<subseteq> K\<close>
by (metis Un_insert_right expansion_def idempotency_L infer_def insert_subset
monotonicity_L rem_inclusion sup_bot.right_neutral)
next
assume a:\<open>K = Cn(A)\<close> and b:\<open>K \<turnstile> \<psi>\<close> and c:\<open>\<not> B \<turnstile> \<psi>\<close> and d:\<open>B \<in> K .\<bottom>. \<phi>\<close>
{ fix \<chi>
assume \<open>\<chi> \<in> K\<close>
hence e:\<open>B \<turnstile> \<phi> .\<longrightarrow>.\<chi>\<close> using remainder_recovery[OF a _ d, of \<chi>] assumption_L by blast
have \<open>\<psi> \<in> K\<close> using a b idempotency_L infer_def by blast
hence f:\<open>B \<union> {\<psi>} \<turnstile> \<phi>\<close> using b c d apply(simp add:rem)
by (meson inclusion_L insert_iff insert_subsetI less_le_not_le subset_iff)
from e f have \<open>B \<union> {\<psi>} \<turnstile> \<chi>\<close> using imp_PL imp_trans by blast
}
then show \<open>K \<subseteq> B \<oplus> \<psi>\<close>
by (simp add: expansion_def subsetI)
qed
text\<open>To eliminate a conjunction, we only need to remove one side\<close>
lemma remainder_conj: \<open>K = Cn(A) \<Longrightarrow> K \<turnstile> \<phi> .\<and>. \<psi> \<Longrightarrow> K .\<bottom>. (\<phi> .\<and>. \<psi>) = (K .\<bottom>. \<phi>) \<union> (K .\<bottom>. \<psi>)\<close>
apply(intro subset_antisym Un_least subsetI, simp add:rem)
apply (meson conj_PL infer_def)
using remainder_recovery_imp[of K A \<open>\<phi> .\<and>. \<psi>\<close> \<phi>]
apply (meson assumption_L conjE1_PL singletonI subsetI valid_imp_PL)
using remainder_recovery_imp[of K A \<open>\<phi> .\<and>. \<psi>\<close> \<psi>]
by (meson assumption_L conjE2_PL singletonI subsetI valid_imp_PL)
end
subsection \<open>Remainders in a compact logic\<close>
text\<open>In case of a supraclassical logic, remainders get impressive properties\<close>
context Compact_logic
begin
text \<open>The following lemma is the Lindembaum's lemma requiring the Zorn's lemma (already available in standard Isabelle/HOL).
For more details, please refer to the book "Theory of logical calculi" @{cite wojcicki2013theory}.
This very important lemma states that we can get a maximal set (remainder \<open>B'\<close>) starting from any set
\<open>B\<close> if this latter does not infer the proposition \<open>\<phi>\<close> we want to eliminate\<close>
lemma upper_remainder: \<open>B \<subseteq> A \<Longrightarrow> \<not> B \<turnstile> \<phi> \<Longrightarrow> \<exists>B'. B \<subseteq> B' \<and> B' \<in> A .\<bottom>. \<phi>\<close>
proof -
assume a:\<open>B \<subseteq> A\<close> and b:\<open>\<not> B \<turnstile> \<phi>\<close>
have c:\<open>\<not> \<tturnstile> \<phi>\<close>
using b infer_def validD_L by blast
define \<B> where "\<B> \<equiv> {B'. B \<subseteq> B' \<and> B' \<subseteq> A \<and> \<not> B' \<turnstile> \<phi>}"
have d:\<open>subset.chain \<B> C \<Longrightarrow> subset.chain {B. \<not> B \<turnstile> \<phi>} C\<close> for C
unfolding \<B>_def
by (simp add: le_fun_def less_eq_set_def subset_chain_def)
have e:\<open>C \<noteq> {} \<Longrightarrow> subset.chain \<B> C \<Longrightarrow> B \<subseteq> \<Union> C\<close> for C
by (metis (no_types, lifting) \<B>_def subset_chain_def less_eq_Sup mem_Collect_eq subset_iff)
{ fix C
assume f:\<open>C \<noteq> {}\<close> and g:\<open>subset.chain \<B> C\<close>
have \<open>\<Union> C \<in> \<B>\<close>
using \<B>_def e[OF f g] chain_closure[OF c d[OF g]]
by simp (metis (no_types, lifting) CollectD Sup_least Sup_subset_mono g subset.chain_def subset_trans)
} note f=this
have \<open>subset.chain \<B> C \<Longrightarrow> \<exists>U\<in>\<B>. \<forall>X\<in>C. X \<subseteq> U\<close> for C
apply (cases \<open>C \<noteq> {}\<close>)
apply (meson Union_upper f)
using \<B>_def a b by blast
with subset_Zorn[OF this, simplified] obtain B' where f:\<open>B'\<in> \<B> \<and> (\<forall>X\<in>\<B>. B' \<subseteq> X \<longrightarrow> X = B')\<close> by auto
then show ?thesis
by (simp add:rem \<B>_def, rule_tac x=B' in exI) (metis psubsetE subset_trans)
qed
\<comment> \<open>An immediate corollary ruling tautologies\<close>
corollary emptyrem2taut: \<open>A .\<bottom>. \<phi> = {} \<Longrightarrow> \<tturnstile> \<phi>\<close>
by (metis bot.extremum empty_iff upper_remainder valid_def)
end
end