Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /afp /BNF_CC /Preliminaries.thy
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
2.05 kB
(* Author: Andreas Lochbihler, ETH Zurich
Author: Joshua Schneider, ETH Zurich *)
section \<open>Preliminaries\<close>
theory Preliminaries imports
Main
begin
alias Grp = BNF_Def.Grp
alias vimage2p = BNF_Def.vimage2p
lemma Domainp_conversep: "Domainp R\<inverse>\<inverse> = Rangep R"
by auto
lemma Grp_apply: "Grp A f x y \<longleftrightarrow> y = f x \<and> x \<in> A"
by (simp add: Grp_def)
lemma conversep_Grp_id: "(Grp A id)\<inverse>\<inverse> = Grp A id"
by (auto simp add: fun_eq_iff Grp_apply)
lemma eq_onp_compp_Grp: "eq_onp P OO Grp A f = Grp (Collect P \<inter> A) f"
by (auto simp add: fun_eq_iff eq_onp_def elim: GrpE intro: GrpI)
consts relcompp_witness :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> 'a \<times> 'c \<Rightarrow> 'b"
specification (relcompp_witness)
relcompp_witness1: "(A OO B) (fst xy) (snd xy) \<Longrightarrow> A (fst xy) (relcompp_witness A B xy)"
relcompp_witness2: "(A OO B) (fst xy) (snd xy) \<Longrightarrow> B (relcompp_witness A B xy) (snd xy)"
apply(fold all_conj_distrib)
apply(rule choice allI)+
apply(auto)
done
lemmas relcompp_witness[of _ _ "(x, y)" for x y, simplified] = relcompp_witness1 relcompp_witness2
hide_fact (open) relcompp_witness1 relcompp_witness2
lemma relcompp_witness_eq [simp]: "relcompp_witness (=) (=) (x, x) = x"
using relcompp_witness(1)[of "(=)" "(=)" x x] by (simp add: eq_OO)
lemma Quotient_equiv_abs1: "\<lbrakk> Quotient R Abs Rep T; R x y \<rbrakk> \<Longrightarrow> T x (Abs y)"
unfolding Quotient_alt_def2 by blast
lemma Quotient_equiv_abs2: "\<lbrakk> Quotient R Abs Rep T; R x y \<rbrakk> \<Longrightarrow> T y (Abs x)"
unfolding Quotient_alt_def2 by blast
lemma Quotient_rep_equiv1: "\<lbrakk> Quotient R Abs Rep T; T a b \<rbrakk> \<Longrightarrow> R a (Rep b)"
unfolding Quotient_alt_def3 by blast
lemma Quotient_rep_equiv2: "\<lbrakk> Quotient R Abs Rep T; T a b \<rbrakk> \<Longrightarrow> R (Rep b) a"
unfolding Quotient_alt_def3 by blast
end