Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Author: Andreas Lochbihler, ETH Zurich | |
Author: Joshua Schneider, ETH Zurich *) | |
section \<open>Preliminaries\<close> | |
theory Preliminaries imports | |
Main | |
begin | |
alias Grp = BNF_Def.Grp | |
alias vimage2p = BNF_Def.vimage2p | |
lemma Domainp_conversep: "Domainp R\<inverse>\<inverse> = Rangep R" | |
by auto | |
lemma Grp_apply: "Grp A f x y \<longleftrightarrow> y = f x \<and> x \<in> A" | |
by (simp add: Grp_def) | |
lemma conversep_Grp_id: "(Grp A id)\<inverse>\<inverse> = Grp A id" | |
by (auto simp add: fun_eq_iff Grp_apply) | |
lemma eq_onp_compp_Grp: "eq_onp P OO Grp A f = Grp (Collect P \<inter> A) f" | |
by (auto simp add: fun_eq_iff eq_onp_def elim: GrpE intro: GrpI) | |
consts relcompp_witness :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> 'a \<times> 'c \<Rightarrow> 'b" | |
specification (relcompp_witness) | |
relcompp_witness1: "(A OO B) (fst xy) (snd xy) \<Longrightarrow> A (fst xy) (relcompp_witness A B xy)" | |
relcompp_witness2: "(A OO B) (fst xy) (snd xy) \<Longrightarrow> B (relcompp_witness A B xy) (snd xy)" | |
apply(fold all_conj_distrib) | |
apply(rule choice allI)+ | |
apply(auto) | |
done | |
lemmas relcompp_witness[of _ _ "(x, y)" for x y, simplified] = relcompp_witness1 relcompp_witness2 | |
hide_fact (open) relcompp_witness1 relcompp_witness2 | |
lemma relcompp_witness_eq [simp]: "relcompp_witness (=) (=) (x, x) = x" | |
using relcompp_witness(1)[of "(=)" "(=)" x x] by (simp add: eq_OO) | |
lemma Quotient_equiv_abs1: "\<lbrakk> Quotient R Abs Rep T; R x y \<rbrakk> \<Longrightarrow> T x (Abs y)" | |
unfolding Quotient_alt_def2 by blast | |
lemma Quotient_equiv_abs2: "\<lbrakk> Quotient R Abs Rep T; R x y \<rbrakk> \<Longrightarrow> T y (Abs x)" | |
unfolding Quotient_alt_def2 by blast | |
lemma Quotient_rep_equiv1: "\<lbrakk> Quotient R Abs Rep T; T a b \<rbrakk> \<Longrightarrow> R a (Rep b)" | |
unfolding Quotient_alt_def3 by blast | |
lemma Quotient_rep_equiv2: "\<lbrakk> Quotient R Abs Rep T; T a b \<rbrakk> \<Longrightarrow> R (Rep b) a" | |
unfolding Quotient_alt_def3 by blast | |
end | |