(* Author: Andreas Lochbihler, ETH Zurich Author: Joshua Schneider, ETH Zurich *) section \Preliminaries\ theory Preliminaries imports Main begin alias Grp = BNF_Def.Grp alias vimage2p = BNF_Def.vimage2p lemma Domainp_conversep: "Domainp R\\ = Rangep R" by auto lemma Grp_apply: "Grp A f x y \ y = f x \ x \ A" by (simp add: Grp_def) lemma conversep_Grp_id: "(Grp A id)\\ = Grp A id" by (auto simp add: fun_eq_iff Grp_apply) lemma eq_onp_compp_Grp: "eq_onp P OO Grp A f = Grp (Collect P \ A) f" by (auto simp add: fun_eq_iff eq_onp_def elim: GrpE intro: GrpI) consts relcompp_witness :: "('a \ 'b \ bool) \ ('b \ 'c \ bool) \ 'a \ 'c \ 'b" specification (relcompp_witness) relcompp_witness1: "(A OO B) (fst xy) (snd xy) \ A (fst xy) (relcompp_witness A B xy)" relcompp_witness2: "(A OO B) (fst xy) (snd xy) \ B (relcompp_witness A B xy) (snd xy)" apply(fold all_conj_distrib) apply(rule choice allI)+ apply(auto) done lemmas relcompp_witness[of _ _ "(x, y)" for x y, simplified] = relcompp_witness1 relcompp_witness2 hide_fact (open) relcompp_witness1 relcompp_witness2 lemma relcompp_witness_eq [simp]: "relcompp_witness (=) (=) (x, x) = x" using relcompp_witness(1)[of "(=)" "(=)" x x] by (simp add: eq_OO) lemma Quotient_equiv_abs1: "\ Quotient R Abs Rep T; R x y \ \ T x (Abs y)" unfolding Quotient_alt_def2 by blast lemma Quotient_equiv_abs2: "\ Quotient R Abs Rep T; R x y \ \ T y (Abs x)" unfolding Quotient_alt_def2 by blast lemma Quotient_rep_equiv1: "\ Quotient R Abs Rep T; T a b \ \ R a (Rep b)" unfolding Quotient_alt_def3 by blast lemma Quotient_rep_equiv2: "\ Quotient R Abs Rep T; T a b \ \ R (Rep b) a" unfolding Quotient_alt_def3 by blast end