Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: OAodv.thy | |
License: BSD 2-Clause. See LICENSE. | |
Author: Timothy Bourke, Inria | |
*) | |
section "The `open' AODV model" | |
theory OAodv | |
imports Aodv AWN.OAWN_SOS_Labels AWN.OAWN_Convert | |
begin | |
text \<open>Definitions for stating and proving global network properties over individual processes.\<close> | |
definition \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V' :: "((ip \<Rightarrow> state) \<times> ((state, msg, pseqp, pseqp label) seqp)) set" | |
where "\<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V' \<equiv> {(\<lambda>i. aodv_init i, \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V PAodv)}" | |
abbreviation opaodv | |
:: "ip \<Rightarrow> ((ip \<Rightarrow> state) \<times> (state, msg, pseqp, pseqp label) seqp, msg seq_action) automaton" | |
where | |
"opaodv i \<equiv> \<lparr> init = \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V', trans = oseqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i \<rparr>" | |
lemma initiali_aodv [intro!, simp]: "initiali i (init (opaodv i)) (init (paodv i))" | |
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_def by rule simp_all | |
lemma oaodv_control_within [simp]: "control_within \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V (init (opaodv i))" | |
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_def by (rule control_withinI) (auto simp del: \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V_simps) | |
lemma \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_labels [simp]: "(\<sigma>, p) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V' \<Longrightarrow> labels \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V p = {PAodv-:0}" | |
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_def by simp | |
lemma oaodv_init_kD_empty [simp]: | |
"(\<sigma>, p) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V' \<Longrightarrow> kD (rt (\<sigma> i)) = {}" | |
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_def kD_def by simp | |
lemma oaodv_init_vD_empty [simp]: | |
"(\<sigma>, p) \<in> \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V' \<Longrightarrow> vD (rt (\<sigma> i)) = {}" | |
unfolding \<sigma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_def vD_def by simp | |
lemma oaodv_trans: "trans (opaodv i) = oseqp_sos \<Gamma>\<^sub>A\<^sub>O\<^sub>D\<^sub>V i" | |
by simp | |
declare | |
oseq_invariant_ctermsI [OF aodv_wf oaodv_control_within aodv_simple_labels oaodv_trans, cterms_intros] | |
oseq_step_invariant_ctermsI [OF aodv_wf oaodv_control_within aodv_simple_labels oaodv_trans, cterms_intros] | |
end | |