(* Title: OAodv.thy License: BSD 2-Clause. See LICENSE. Author: Timothy Bourke, Inria *) section "The `open' AODV model" theory OAodv imports Aodv AWN.OAWN_SOS_Labels AWN.OAWN_Convert begin text \Definitions for stating and proving global network properties over individual processes.\ definition \\<^sub>A\<^sub>O\<^sub>D\<^sub>V' :: "((ip \ state) \ ((state, msg, pseqp, pseqp label) seqp)) set" where "\\<^sub>A\<^sub>O\<^sub>D\<^sub>V' \ {(\i. aodv_init i, \\<^sub>A\<^sub>O\<^sub>D\<^sub>V PAodv)}" abbreviation opaodv :: "ip \ ((ip \ state) \ (state, msg, pseqp, pseqp label) seqp, msg seq_action) automaton" where "opaodv i \ \ init = \\<^sub>A\<^sub>O\<^sub>D\<^sub>V', trans = oseqp_sos \\<^sub>A\<^sub>O\<^sub>D\<^sub>V i \" lemma initiali_aodv [intro!, simp]: "initiali i (init (opaodv i)) (init (paodv i))" unfolding \\<^sub>A\<^sub>O\<^sub>D\<^sub>V_def \\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_def by rule simp_all lemma oaodv_control_within [simp]: "control_within \\<^sub>A\<^sub>O\<^sub>D\<^sub>V (init (opaodv i))" unfolding \\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_def by (rule control_withinI) (auto simp del: \\<^sub>A\<^sub>O\<^sub>D\<^sub>V_simps) lemma \\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_labels [simp]: "(\, p) \ \\<^sub>A\<^sub>O\<^sub>D\<^sub>V' \ labels \\<^sub>A\<^sub>O\<^sub>D\<^sub>V p = {PAodv-:0}" unfolding \\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_def by simp lemma oaodv_init_kD_empty [simp]: "(\, p) \ \\<^sub>A\<^sub>O\<^sub>D\<^sub>V' \ kD (rt (\ i)) = {}" unfolding \\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_def kD_def by simp lemma oaodv_init_vD_empty [simp]: "(\, p) \ \\<^sub>A\<^sub>O\<^sub>D\<^sub>V' \ vD (rt (\ i)) = {}" unfolding \\<^sub>A\<^sub>O\<^sub>D\<^sub>V'_def vD_def by simp lemma oaodv_trans: "trans (opaodv i) = oseqp_sos \\<^sub>A\<^sub>O\<^sub>D\<^sub>V i" by simp declare oseq_invariant_ctermsI [OF aodv_wf oaodv_control_within aodv_simple_labels oaodv_trans, cterms_intros] oseq_step_invariant_ctermsI [OF aodv_wf oaodv_control_within aodv_simple_labels oaodv_trans, cterms_intros] end