Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: Fresher.thy | |
License: BSD 2-Clause. See LICENSE. | |
Author: Timothy Bourke, Inria | |
*) | |
section "Quality relations between routes" | |
theory Fresher | |
imports Aodv_Data | |
begin | |
subsection "Net sequence numbers" | |
subsubsection "On individual routes" | |
definition | |
nsqn\<^sub>r :: "r \<Rightarrow> sqn" | |
where | |
"nsqn\<^sub>r r \<equiv> if \<pi>\<^sub>4(r) = val \<or> \<pi>\<^sub>2(r) = 0 then \<pi>\<^sub>2(r) else (\<pi>\<^sub>2(r) - 1)" | |
lemma nsqnr_def': | |
"nsqn\<^sub>r r = (if \<pi>\<^sub>4(r) = inv then \<pi>\<^sub>2(r) - 1 else \<pi>\<^sub>2(r))" | |
unfolding nsqn\<^sub>r_def by simp | |
lemma nsqn\<^sub>r_zero [simp]: | |
"\<And>dsn dsk flag hops nhip pre. nsqn\<^sub>r (0, dsk, flag, hops, nhip, pre) = 0" | |
unfolding nsqn\<^sub>r_def by clarsimp | |
lemma nsqn\<^sub>r_val [simp]: | |
"\<And>dsn dsk hops nhip pre. nsqn\<^sub>r (dsn, dsk, val, hops, nhip, pre) = dsn" | |
unfolding nsqn\<^sub>r_def by clarsimp | |
lemma nsqn\<^sub>r_inv [simp]: | |
"\<And>dsn dsk hops nhip pre. nsqn\<^sub>r (dsn, dsk, inv, hops, nhip, pre) = dsn - 1" | |
unfolding nsqn\<^sub>r_def by clarsimp | |
lemma nsqn\<^sub>r_lte_dsn [simp]: | |
"\<And>dsn dsk flag hops nhip pre. nsqn\<^sub>r (dsn, dsk, flag, hops, nhip, pre) \<le> dsn" | |
unfolding nsqn\<^sub>r_def by clarsimp | |
subsubsection "On routes in routing tables" | |
definition | |
nsqn :: "rt \<Rightarrow> ip \<Rightarrow> sqn" | |
where | |
"nsqn \<equiv> \<lambda>rt dip. case \<sigma>\<^bsub>route\<^esub>(rt, dip) of None \<Rightarrow> 0 | Some r \<Rightarrow> nsqn\<^sub>r(r)" | |
lemma nsqn_sqn_def: | |
"\<And>rt dip. nsqn rt dip = (if flag rt dip = Some val \<or> sqn rt dip = 0 | |
then sqn rt dip else sqn rt dip - 1)" | |
unfolding nsqn_def sqn_def by (clarsimp split: option.split) | |
lemma not_in_kD_nsqn [simp]: | |
assumes "dip \<notin> kD(rt)" | |
shows "nsqn rt dip = 0" | |
using assms unfolding nsqn_def by simp | |
lemma kD_nsqn: | |
assumes "dip \<in> kD(rt)" | |
shows "nsqn rt dip = nsqn\<^sub>r(the (\<sigma>\<^bsub>route\<^esub>(rt, dip)))" | |
using assms [THEN kD_Some] unfolding nsqn_def by clarsimp | |
lemma nsqnr_r_flag_pred [simp, intro]: | |
fixes dsn dsk flag hops nhip pre | |
assumes "P (nsqn\<^sub>r (dsn, dsk, val, hops, nhip, pre))" | |
and "P (nsqn\<^sub>r (dsn, dsk, inv, hops, nhip, pre))" | |
shows "P (nsqn\<^sub>r (dsn, dsk, flag, hops, nhip, pre))" | |
using assms by (cases flag) auto | |
lemma nsqn\<^sub>r_addpreRT_inv [simp]: | |
"\<And>rt dip npre dip'. dip \<in> kD(rt) \<Longrightarrow> | |
nsqn\<^sub>r (the (the (addpreRT rt dip npre) dip')) = nsqn\<^sub>r (the (rt dip'))" | |
unfolding addpreRT_def nsqn\<^sub>r_def | |
by (frule kD_Some) (clarsimp split: option.split) | |
lemma sqn_nsqn: | |
"\<And>rt dip. sqn rt dip - 1 \<le> nsqn rt dip" | |
unfolding sqn_def nsqn_def by (clarsimp split: option.split) | |
lemma nsqn_sqn: "nsqn rt dip \<le> sqn rt dip" | |
unfolding sqn_def nsqn_def by (cases "rt dip") auto | |
lemma val_nsqn_sqn [elim, simp]: | |
assumes "ip\<in>kD(rt)" | |
and "the (flag rt ip) = val" | |
shows "nsqn rt ip = sqn rt ip" | |
using assms unfolding nsqn_sqn_def by auto | |
lemma vD_nsqn_sqn [elim, simp]: | |
assumes "ip\<in>vD(rt)" | |
shows "nsqn rt ip = sqn rt ip" | |
proof - | |
from \<open>ip\<in>vD(rt)\<close> have "ip\<in>kD(rt)" | |
and "the (flag rt ip) = val" by auto | |
thus ?thesis .. | |
qed | |
lemma inv_nsqn_sqn [elim, simp]: | |
assumes "ip\<in>kD(rt)" | |
and "the (flag rt ip) = inv" | |
shows "nsqn rt ip = sqn rt ip - 1" | |
using assms unfolding nsqn_sqn_def by auto | |
lemma iD_nsqn_sqn [elim, simp]: | |
assumes "ip\<in>iD(rt)" | |
shows "nsqn rt ip = sqn rt ip - 1" | |
proof - | |
from \<open>ip\<in>iD(rt)\<close> have "ip\<in>kD(rt)" | |
and "the (flag rt ip) = inv" by auto | |
thus ?thesis .. | |
qed | |
lemma nsqn_update_changed_kno_val [simp]: "\<And>rt ip dsn dsk hops nhip. | |
rt \<noteq> update rt ip (dsn, kno, val, hops, nhip, {}) | |
\<Longrightarrow> nsqn (update rt ip (dsn, kno, val, hops, nhip, {})) ip = dsn" | |
unfolding nsqn\<^sub>r_def update_def | |
by (clarsimp simp: kD_nsqn split: option.split_asm option.split if_split_asm) | |
(metis fun_upd_triv) | |
lemma nsqn_addpreRT_inv [simp]: | |
"\<And>rt dip npre dip'. dip \<in> kD(rt) \<Longrightarrow> | |
nsqn (the (addpreRT rt dip npre)) dip' = nsqn rt dip'" | |
unfolding addpreRT_def nsqn_def nsqn\<^sub>r_def | |
by (frule kD_Some) (clarsimp split: option.split) | |
lemma nsqn_update_other [simp]: | |
fixes dsn dsk flag hops dip nhip pre rt ip | |
assumes "dip \<noteq> ip" | |
shows "nsqn (update rt ip (dsn, dsk, flag, hops, nhip, pre)) dip = nsqn rt dip" | |
using assms unfolding nsqn_def | |
by (clarsimp split: option.split) | |
lemma nsqn_invalidate_eq: | |
assumes "dip \<in> kD(rt)" | |
and "dests dip = Some rsn" | |
shows "nsqn (invalidate rt dests) dip = rsn - 1" | |
using assms | |
proof - | |
from assms obtain dsk hops nhip pre | |
where "invalidate rt dests dip = Some (rsn, dsk, inv, hops, nhip, pre)" | |
unfolding invalidate_def by auto | |
moreover from \<open>dip \<in> kD(rt)\<close> have "dip \<in> kD(invalidate rt dests)" by simp | |
ultimately show ?thesis | |
using \<open>dests dip = Some rsn\<close> by simp | |
qed | |
lemma nsqn_invalidate_other [simp]: | |
assumes "dip\<in>kD(rt)" | |
and "dip\<notin>dom dests" | |
shows "nsqn (invalidate rt dests) dip = nsqn rt dip" | |
using assms by (clarsimp simp add: kD_nsqn) | |
subsection "Comparing routes " | |
definition | |
fresher :: "r \<Rightarrow> r \<Rightarrow> bool" ("(_/ \<sqsubseteq> _)" [51, 51] 50) | |
where | |
"fresher r r' \<equiv> ((nsqn\<^sub>r r < nsqn\<^sub>r r') \<or> (nsqn\<^sub>r r = nsqn\<^sub>r r' \<and> \<pi>\<^sub>5(r) \<ge> \<pi>\<^sub>5(r')))" | |
lemma fresherI1 [intro]: | |
assumes "nsqn\<^sub>r r < nsqn\<^sub>r r'" | |
shows "r \<sqsubseteq> r'" | |
unfolding fresher_def using assms by simp | |
lemma fresherI2 [intro]: | |
assumes "nsqn\<^sub>r r = nsqn\<^sub>r r'" | |
and "\<pi>\<^sub>5(r) \<ge> \<pi>\<^sub>5(r')" | |
shows "r \<sqsubseteq> r'" | |
unfolding fresher_def using assms by simp | |
lemma fresherI [intro]: | |
assumes "(nsqn\<^sub>r r < nsqn\<^sub>r r') \<or> (nsqn\<^sub>r r = nsqn\<^sub>r r' \<and> \<pi>\<^sub>5(r) \<ge> \<pi>\<^sub>5(r'))" | |
shows "r \<sqsubseteq> r'" | |
unfolding fresher_def using assms . | |
lemma fresherE [elim]: | |
assumes "r \<sqsubseteq> r'" | |
and "nsqn\<^sub>r r < nsqn\<^sub>r r' \<Longrightarrow> P r r'" | |
and "nsqn\<^sub>r r = nsqn\<^sub>r r' \<and> \<pi>\<^sub>5(r) \<ge> \<pi>\<^sub>5(r') \<Longrightarrow> P r r'" | |
shows "P r r'" | |
using assms unfolding fresher_def by auto | |
lemma fresher_refl [simp]: "r \<sqsubseteq> r" | |
unfolding fresher_def by simp | |
lemma fresher_trans [elim, trans]: | |
"\<lbrakk> x \<sqsubseteq> y; y \<sqsubseteq> z \<rbrakk> \<Longrightarrow> x \<sqsubseteq> z" | |
unfolding fresher_def by auto | |
lemma not_fresher_trans [elim, trans]: | |
"\<lbrakk> \<not>(x \<sqsubseteq> y); \<not>(z \<sqsubseteq> x) \<rbrakk> \<Longrightarrow> \<not>(z \<sqsubseteq> y)" | |
unfolding fresher_def by auto | |
lemma fresher_dsn_flag_hops_const [simp]: | |
fixes dsn dsk dsk' flag hops nhip nhip' pre pre' | |
shows "(dsn, dsk, flag, hops, nhip, pre) \<sqsubseteq> (dsn, dsk', flag, hops, nhip', pre')" | |
unfolding fresher_def by (cases flag) simp_all | |
lemma addpre_fresher [simp]: "\<And>r npre. r \<sqsubseteq> (addpre r npre)" | |
by clarsimp | |
subsection "Comparing routing tables " | |
definition | |
rt_fresher :: "ip \<Rightarrow> rt \<Rightarrow> rt \<Rightarrow> bool" | |
where | |
"rt_fresher \<equiv> \<lambda>dip rt rt'. (the (\<sigma>\<^bsub>route\<^esub>(rt, dip))) \<sqsubseteq> (the (\<sigma>\<^bsub>route\<^esub>(rt', dip)))" | |
abbreviation | |
rt_fresher_syn :: "rt \<Rightarrow> ip \<Rightarrow> rt \<Rightarrow> bool" ("(_/ \<sqsubseteq>\<^bsub>_\<^esub> _)" [51, 999, 51] 50) | |
where | |
"rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2 \<equiv> rt_fresher i rt1 rt2" | |
lemma rt_fresher_def': | |
"(rt\<^sub>1 \<sqsubseteq>\<^bsub>i\<^esub> rt\<^sub>2) = (nsqn\<^sub>r (the (rt\<^sub>1 i)) < nsqn\<^sub>r (the (rt\<^sub>2 i)) \<or> | |
nsqn\<^sub>r (the (rt\<^sub>1 i)) = nsqn\<^sub>r (the (rt\<^sub>2 i)) \<and> \<pi>\<^sub>5 (the (rt\<^sub>2 i)) \<le> \<pi>\<^sub>5 (the (rt\<^sub>1 i)))" | |
unfolding rt_fresher_def fresher_def by (rule refl) | |
lemma single_rt_fresher [intro]: | |
assumes "the (rt1 ip) \<sqsubseteq> the (rt2 ip)" | |
shows "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2" | |
using assms unfolding rt_fresher_def . | |
lemma rt_fresher_single [intro]: | |
assumes "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2" | |
shows "the (rt1 ip) \<sqsubseteq> the (rt2 ip)" | |
using assms unfolding rt_fresher_def . | |
lemma rt_fresher_def2: | |
assumes "dip \<in> kD(rt1)" | |
and "dip \<in> kD(rt2)" | |
shows "(rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2) = (nsqn rt1 dip < nsqn rt2 dip | |
\<or> (nsqn rt1 dip = nsqn rt2 dip | |
\<and> the (dhops rt1 dip) \<ge> the (dhops rt2 dip)))" | |
using assms unfolding rt_fresher_def fresher_def by (simp add: kD_nsqn proj5_eq_dhops) | |
lemma rt_fresherI1 [intro]: | |
assumes "dip \<in> kD(rt1)" | |
and "dip \<in> kD(rt2)" | |
and "nsqn rt1 dip < nsqn rt2 dip" | |
shows "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" | |
unfolding rt_fresher_def2 [OF assms(1-2)] using assms(3) by simp | |
lemma rt_fresherI2 [intro]: | |
assumes "dip \<in> kD(rt1)" | |
and "dip \<in> kD(rt2)" | |
and "nsqn rt1 dip = nsqn rt2 dip" | |
and "the (dhops rt1 dip) \<ge> the (dhops rt2 dip)" | |
shows "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" | |
unfolding rt_fresher_def2 [OF assms(1-2)] using assms(3-4) by simp | |
lemma rt_fresherE [elim]: | |
assumes "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" | |
and "dip \<in> kD(rt1)" | |
and "dip \<in> kD(rt2)" | |
and "\<lbrakk> nsqn rt1 dip < nsqn rt2 dip \<rbrakk> \<Longrightarrow> P rt1 rt2 dip" | |
and "\<lbrakk> nsqn rt1 dip = nsqn rt2 dip; | |
the (dhops rt1 dip) \<ge> the (dhops rt2 dip) \<rbrakk> \<Longrightarrow> P rt1 rt2 dip" | |
shows "P rt1 rt2 dip" | |
using assms(1) unfolding rt_fresher_def2 [OF assms(2-3)] | |
using assms(4-5) by auto | |
lemma rt_fresher_refl [simp]: "rt \<sqsubseteq>\<^bsub>dip\<^esub> rt" | |
unfolding rt_fresher_def by simp | |
lemma rt_fresher_trans [elim, trans]: | |
assumes "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" | |
and "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3" | |
shows "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt3" | |
using assms unfolding rt_fresher_def by auto | |
lemma rt_fresher_if_Some [intro!]: | |
assumes "the (rt dip) \<sqsubseteq> r" | |
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> (\<lambda>ip. if ip = dip then Some r else rt ip)" | |
using assms unfolding rt_fresher_def by simp | |
definition rt_fresh_as :: "ip \<Rightarrow> rt \<Rightarrow> rt \<Rightarrow> bool" | |
where | |
"rt_fresh_as \<equiv> \<lambda>dip rt1 rt2. (rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2) \<and> (rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)" | |
abbreviation | |
rt_fresh_as_syn :: "rt \<Rightarrow> ip \<Rightarrow> rt \<Rightarrow> bool" ("(_/ \<approx>\<^bsub>_\<^esub> _)" [51, 999, 51] 50) | |
where | |
"rt1 \<approx>\<^bsub>i\<^esub> rt2 \<equiv> rt_fresh_as i rt1 rt2" | |
lemma rt_fresh_as_refl [simp]: "\<And>rt dip. rt \<approx>\<^bsub>dip\<^esub> rt" | |
unfolding rt_fresh_as_def by simp | |
lemma rt_fresh_as_trans [simp, intro, trans]: | |
"\<And>rt1 rt2 rt3 dip. \<lbrakk> rt1 \<approx>\<^bsub>dip\<^esub> rt2; rt2 \<approx>\<^bsub>dip\<^esub> rt3 \<rbrakk> \<Longrightarrow> rt1 \<approx>\<^bsub>dip\<^esub> rt3" | |
unfolding rt_fresh_as_def rt_fresher_def | |
by (metis (mono_tags) fresher_trans) | |
lemma rt_fresh_asI [intro!]: | |
assumes "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" | |
and "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1" | |
shows "rt1 \<approx>\<^bsub>dip\<^esub> rt2" | |
using assms unfolding rt_fresh_as_def by simp | |
lemma rt_fresh_as_fresherI [intro]: | |
assumes "dip\<in>kD(rt1)" | |
and "dip\<in>kD(rt2)" | |
and "the (rt1 dip) \<sqsubseteq> the (rt2 dip)" | |
and "the (rt2 dip) \<sqsubseteq> the (rt1 dip)" | |
shows "rt1 \<approx>\<^bsub>dip\<^esub> rt2" | |
using assms unfolding rt_fresh_as_def | |
by (clarsimp dest!: single_rt_fresher) | |
lemma nsqn_rt_fresh_asI: | |
assumes "dip \<in> kD(rt)" | |
and "dip \<in> kD(rt')" | |
and "nsqn rt dip = nsqn rt' dip" | |
and "\<pi>\<^sub>5(the (rt dip)) = \<pi>\<^sub>5(the (rt' dip))" | |
shows "rt \<approx>\<^bsub>dip\<^esub> rt'" | |
proof | |
from assms(1-2,4) have dhops': "the (dhops rt' dip) \<le> the (dhops rt dip)" | |
by (simp add: proj5_eq_dhops) | |
with assms(1-3) show "rt \<sqsubseteq>\<^bsub>dip\<^esub> rt'" | |
by (rule rt_fresherI2) | |
next | |
from assms(1-2,4) have dhops: "the (dhops rt dip) \<le> the (dhops rt' dip)" | |
by (simp add: proj5_eq_dhops) | |
with assms(2,1) assms(3) [symmetric] show "rt' \<sqsubseteq>\<^bsub>dip\<^esub> rt" | |
by (rule rt_fresherI2) | |
qed | |
lemma rt_fresh_asE [elim]: | |
assumes "rt1 \<approx>\<^bsub>dip\<^esub> rt2" | |
and "\<lbrakk> rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2; rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1 \<rbrakk> \<Longrightarrow> P rt1 rt2 dip" | |
shows "P rt1 rt2 dip" | |
using assms unfolding rt_fresh_as_def by simp | |
lemma rt_fresh_asD1 [dest]: | |
assumes "rt1 \<approx>\<^bsub>dip\<^esub> rt2" | |
shows "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" | |
using assms unfolding rt_fresh_as_def by simp | |
lemma rt_fresh_asD2 [dest]: | |
assumes "rt1 \<approx>\<^bsub>dip\<^esub> rt2" | |
shows "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1" | |
using assms unfolding rt_fresh_as_def by simp | |
lemma rt_fresh_as_sym: | |
assumes "rt1 \<approx>\<^bsub>dip\<^esub> rt2" | |
shows "rt2 \<approx>\<^bsub>dip\<^esub> rt1" | |
using assms unfolding rt_fresh_as_def by simp | |
lemma not_rt_fresh_asI1 [intro]: | |
assumes "\<not> (rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2)" | |
shows "\<not> (rt1 \<approx>\<^bsub>dip\<^esub> rt2)" | |
proof | |
assume "rt1 \<approx>\<^bsub>dip\<^esub> rt2" | |
hence "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" .. | |
with \<open>\<not> (rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2)\<close> show False .. | |
qed | |
lemma not_rt_fresh_asI2 [intro]: | |
assumes "\<not> (rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)" | |
shows "\<not> (rt1 \<approx>\<^bsub>dip\<^esub> rt2)" | |
proof | |
assume "rt1 \<approx>\<^bsub>dip\<^esub> rt2" | |
hence "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1" .. | |
with \<open>\<not> (rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)\<close> show False .. | |
qed | |
lemma not_single_rt_fresher [elim]: | |
assumes "\<not>(the (rt1 ip) \<sqsubseteq> the (rt2 ip))" | |
shows "\<not>(rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2)" | |
proof | |
assume "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2" | |
hence "the (rt1 ip) \<sqsubseteq> the (rt2 ip)" .. | |
with \<open>\<not>(the (rt1 ip) \<sqsubseteq> the (rt2 ip))\<close> show False .. | |
qed | |
lemmas not_single_rt_fresh_asI1 [intro] = not_rt_fresh_asI1 [OF not_single_rt_fresher] | |
lemmas not_single_rt_fresh_asI2 [intro] = not_rt_fresh_asI2 [OF not_single_rt_fresher] | |
lemma not_rt_fresher_single [elim]: | |
assumes "\<not>(rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2)" | |
shows "\<not>(the (rt1 ip) \<sqsubseteq> the (rt2 ip))" | |
proof | |
assume "the (rt1 ip) \<sqsubseteq> the (rt2 ip)" | |
hence "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2" .. | |
with \<open>\<not>(rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2)\<close> show False .. | |
qed | |
lemma rt_fresh_as_nsqnr: | |
assumes "dip \<in> kD(rt1)" | |
and "dip \<in> kD(rt2)" | |
and "rt1 \<approx>\<^bsub>dip\<^esub> rt2" | |
shows "nsqn\<^sub>r (the (rt2 dip)) = nsqn\<^sub>r (the (rt1 dip))" | |
using assms(3) unfolding rt_fresh_as_def | |
by (auto simp: rt_fresher_def2 [OF \<open>dip \<in> kD(rt1)\<close> \<open>dip \<in> kD(rt2)\<close>] | |
rt_fresher_def2 [OF \<open>dip \<in> kD(rt2)\<close> \<open>dip \<in> kD(rt1)\<close>] | |
kD_nsqn [OF \<open>dip \<in> kD(rt1)\<close>] | |
kD_nsqn [OF \<open>dip \<in> kD(rt2)\<close>]) | |
lemma rt_fresher_mapupd [intro!]: | |
assumes "dip\<in>kD(rt)" | |
and "the (rt dip) \<sqsubseteq> r" | |
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> rt(dip \<mapsto> r)" | |
using assms unfolding rt_fresher_def by simp | |
lemma rt_fresher_map_update_other [intro!]: | |
assumes "dip\<in>kD(rt)" | |
and "dip \<noteq> ip" | |
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> rt(ip \<mapsto> r)" | |
using assms unfolding rt_fresher_def by simp | |
lemma rt_fresher_update_other [simp]: | |
assumes inkD: "dip\<in>kD(rt)" | |
and "dip \<noteq> ip" | |
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> update rt ip r" | |
using assms unfolding update_def | |
by (clarsimp split: option.split) (fastforce) | |
theorem rt_fresher_update [simp]: | |
assumes "dip\<in>kD(rt)" | |
and "the (dhops rt dip) \<ge> 1" | |
and "update_arg_wf r" | |
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> update rt ip r" | |
proof (cases "dip = ip") | |
assume "dip \<noteq> ip" with \<open>dip\<in>kD(rt)\<close> show ?thesis | |
by (rule rt_fresher_update_other) | |
next | |
assume "dip = ip" | |
from \<open>dip\<in>kD(rt)\<close> obtain dsn\<^sub>n dsk\<^sub>n f\<^sub>n hops\<^sub>n nhip\<^sub>n pre\<^sub>n | |
where rtn [simp]: "the (rt dip) = (dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)" | |
by (metis prod_cases6) | |
with \<open>the (dhops rt dip) \<ge> 1\<close> and \<open>dip\<in>kD(rt)\<close> have "hops\<^sub>n \<ge> 1" | |
by (metis proj5_eq_dhops projs(4)) | |
from \<open>dip\<in>kD(rt)\<close> rtn have [simp]: "sqn rt dip = dsn\<^sub>n" | |
and [simp]: "the (dhops rt dip) = hops\<^sub>n" | |
and [simp]: "the (flag rt dip) = f\<^sub>n" | |
by (simp add: sqn_def proj5_eq_dhops [symmetric] | |
proj4_eq_flag [symmetric])+ | |
from \<open>update_arg_wf r\<close> have "(dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n) | |
\<sqsubseteq> the ((update rt dip r) dip)" | |
proof (rule wf_r_cases) | |
fix nhip pre | |
from \<open>hops\<^sub>n \<ge> 1\<close> have "\<And>pre'. (dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n) | |
\<sqsubseteq> (dsn\<^sub>n, unk, val, Suc 0, nhip, pre')" | |
unfolding fresher_def sqn_def by (cases f\<^sub>n) auto | |
thus "(dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n) | |
\<sqsubseteq> the (update rt dip (0, unk, val, Suc 0, nhip, pre) dip)" | |
using \<open>dip\<in>kD(rt)\<close> by - (rule update_cases_kD, simp_all) | |
next | |
fix dsn :: sqn and hops nhip pre | |
assume "0 < dsn" | |
show "(dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n) | |
\<sqsubseteq> the (update rt dip (dsn, kno, val, hops, nhip, pre) dip)" | |
proof (rule update_cases_kD [OF _ \<open>dip\<in>kD(rt)\<close>], simp_all add: \<open>0 < dsn\<close>) | |
assume "dsn\<^sub>n < dsn" | |
thus "(dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n) | |
\<sqsubseteq> (dsn, kno, val, hops, nhip, pre \<union> pre\<^sub>n)" | |
unfolding fresher_def by auto | |
next | |
assume "dsn\<^sub>n = dsn" | |
and "hops < hops\<^sub>n" | |
thus "(dsn, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n) | |
\<sqsubseteq> (dsn, kno, val, hops, nhip, pre \<union> pre\<^sub>n)" | |
unfolding fresher_def nsqn\<^sub>r_def by simp | |
next | |
assume "dsn\<^sub>n = dsn" | |
with \<open>0 < dsn\<close> | |
show "(dsn, dsk\<^sub>n, inv, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n) | |
\<sqsubseteq> (dsn, kno, val, hops, nhip, pre \<union> pre\<^sub>n)" | |
unfolding fresher_def by simp | |
qed | |
qed | |
hence "rt \<sqsubseteq>\<^bsub>dip\<^esub> update rt dip r" | |
by - (rule single_rt_fresher, simp) | |
with \<open>dip = ip\<close> show ?thesis by simp | |
qed | |
theorem rt_fresher_invalidate [simp]: | |
assumes "dip\<in>kD(rt)" | |
and indests: "\<forall>rip\<in>dom(dests). rip\<in>vD(rt) \<and> sqn rt rip < the (dests rip)" | |
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> invalidate rt dests" | |
proof (cases "dip\<in>dom(dests)") | |
assume "dip\<notin>dom(dests)" | |
thus ?thesis using \<open>dip\<in>kD(rt)\<close> | |
by - (rule single_rt_fresher, simp) | |
next | |
assume "dip\<in>dom(dests)" | |
moreover with indests have "dip\<in>vD(rt)" | |
and "sqn rt dip < the (dests dip)" | |
by auto | |
ultimately show ?thesis | |
unfolding invalidate_def sqn_def | |
by - (rule single_rt_fresher, auto simp: fresher_def) | |
qed | |
lemma nsqn\<^sub>r_invalidate [simp]: | |
assumes "dip\<in>kD(rt)" | |
and "dip\<in>dom(dests)" | |
shows "nsqn\<^sub>r (the (invalidate rt dests dip)) = the (dests dip) - 1" | |
using assms unfolding invalidate_def by auto | |
lemma rt_fresh_as_inc_invalidate [simp]: | |
assumes "dip\<in>kD(rt)" | |
and "\<forall>rip\<in>dom(dests). rip\<in>vD(rt) \<and> the (dests rip) = inc (sqn rt rip)" | |
shows "rt \<approx>\<^bsub>dip\<^esub> invalidate rt dests" | |
proof (cases "dip\<in>dom(dests)") | |
assume "dip\<notin>dom(dests)" | |
with \<open>dip\<in>kD(rt)\<close> have "dip\<in>kD(invalidate rt dests)" | |
by simp | |
with \<open>dip\<in>kD(rt)\<close> show ?thesis | |
by rule (simp_all add: \<open>dip\<notin>dom(dests)\<close>) | |
next | |
assume "dip\<in>dom(dests)" | |
with assms(2) have "dip\<in>vD(rt)" | |
and "the (dests dip) = inc (sqn rt dip)" by auto | |
from \<open>dip\<in>vD(rt)\<close> have "dip\<in>kD(rt)" by simp | |
moreover then have "dip\<in>kD(invalidate rt dests)" by simp | |
ultimately show ?thesis | |
proof (rule nsqn_rt_fresh_asI) | |
from \<open>dip\<in>vD(rt)\<close> have "nsqn rt dip = sqn rt dip" by simp | |
also have "sqn rt dip = nsqn\<^sub>r (the (invalidate rt dests dip))" | |
proof - | |
from \<open>dip\<in>kD(rt)\<close> have "nsqn\<^sub>r (the (invalidate rt dests dip)) = the (dests dip) - 1" | |
using \<open>dip\<in>dom(dests)\<close> by (rule nsqn\<^sub>r_invalidate) | |
with \<open>the (dests dip) = inc (sqn rt dip)\<close> | |
show "sqn rt dip = nsqn\<^sub>r (the (invalidate rt dests dip))" by simp | |
qed | |
also from \<open>dip\<in>kD(invalidate rt dests)\<close> | |
have "nsqn\<^sub>r (the (invalidate rt dests dip)) = nsqn (invalidate rt dests) dip" | |
by (simp add: kD_nsqn) | |
finally show "nsqn rt dip = nsqn (invalidate rt dests) dip" . | |
qed simp | |
qed | |
lemmas rt_fresher_inc_invalidate [simp] = rt_fresh_as_inc_invalidate [THEN rt_fresh_asD1] | |
lemma rt_fresh_as_addpreRT [simp]: | |
assumes "ip\<in>kD(rt)" | |
shows "rt \<approx>\<^bsub>dip\<^esub> the (addpreRT rt ip npre)" | |
using assms [THEN kD_Some] by (auto simp: addpreRT_def) | |
lemmas rt_fresher_addpreRT [simp] = rt_fresh_as_addpreRT [THEN rt_fresh_asD1] | |
subsection "Strictly comparing routing tables " | |
definition rt_strictly_fresher :: "ip \<Rightarrow> rt \<Rightarrow> rt \<Rightarrow> bool" | |
where | |
"rt_strictly_fresher \<equiv> \<lambda>dip rt1 rt2. (rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2) \<and> \<not>(rt1 \<approx>\<^bsub>dip\<^esub> rt2)" | |
abbreviation | |
rt_strictly_fresher_syn :: "rt \<Rightarrow> ip \<Rightarrow> rt \<Rightarrow> bool" ("(_/ \<sqsubset>\<^bsub>_\<^esub> _)" [51, 999, 51] 50) | |
where | |
"rt1 \<sqsubset>\<^bsub>i\<^esub> rt2 \<equiv> rt_strictly_fresher i rt1 rt2" | |
lemma rt_strictly_fresher_def'': | |
"rt1 \<sqsubset>\<^bsub>i\<^esub> rt2 = ((rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2) \<and> \<not>(rt2 \<sqsubseteq>\<^bsub>i\<^esub> rt1))" | |
unfolding rt_strictly_fresher_def rt_fresh_as_def by auto | |
lemma rt_strictly_fresherI' [intro]: | |
assumes "rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2" | |
and "\<not>(rt2 \<sqsubseteq>\<^bsub>i\<^esub> rt1)" | |
shows "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2" | |
using assms unfolding rt_strictly_fresher_def'' by simp | |
lemma rt_strictly_fresherE' [elim]: | |
assumes "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2" | |
and "\<lbrakk> rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2; \<not>(rt2 \<sqsubseteq>\<^bsub>i\<^esub> rt1) \<rbrakk> \<Longrightarrow> P rt1 rt2 i" | |
shows "P rt1 rt2 i" | |
using assms unfolding rt_strictly_fresher_def'' by simp | |
lemma rt_strictly_fresherI [intro]: | |
assumes "rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2" | |
and "\<not>(rt1 \<approx>\<^bsub>i\<^esub> rt2)" | |
shows "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2" | |
unfolding rt_strictly_fresher_def using assms .. | |
lemmas rt_strictly_fresher_singleI [elim] = rt_strictly_fresherI [OF single_rt_fresher] | |
lemma rt_strictly_fresherE [elim]: | |
assumes "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2" | |
and "\<lbrakk> rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2; \<not>(rt1 \<approx>\<^bsub>i\<^esub> rt2) \<rbrakk> \<Longrightarrow> P rt1 rt2 i" | |
shows "P rt1 rt2 i" | |
using assms(1) unfolding rt_strictly_fresher_def | |
by rule (erule(1) assms(2)) | |
lemma rt_strictly_fresher_def': | |
"rt1 \<sqsubset>\<^bsub>i\<^esub> rt2 = | |
(nsqn\<^sub>r (the (rt1 i)) < nsqn\<^sub>r (the (rt2 i)) | |
\<or> (nsqn\<^sub>r (the (rt1 i)) = nsqn\<^sub>r (the (rt2 i)) \<and> \<pi>\<^sub>5(the (rt1 i)) > \<pi>\<^sub>5(the (rt2 i))))" | |
unfolding rt_strictly_fresher_def'' rt_fresher_def fresher_def by auto | |
lemma rt_strictly_fresher_fresherD [dest]: | |
assumes "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2" | |
shows "the (rt1 dip) \<sqsubseteq> the (rt2 dip)" | |
using assms unfolding rt_strictly_fresher_def rt_fresher_def by auto | |
lemma rt_strictly_fresher_not_fresh_asD [dest]: | |
assumes "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2" | |
shows "\<not> rt1 \<approx>\<^bsub>dip\<^esub> rt2" | |
using assms unfolding rt_strictly_fresher_def by auto | |
lemma rt_strictly_fresher_trans [elim, trans]: | |
assumes "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2" | |
and "rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3" | |
shows "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3" | |
using assms proof - | |
from \<open>rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2\<close> obtain "the (rt1 dip) \<sqsubseteq> the (rt2 dip)" by auto | |
also from \<open>rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3\<close> obtain "the (rt2 dip) \<sqsubseteq> the (rt3 dip)" by auto | |
finally have "the (rt1 dip) \<sqsubseteq> the (rt3 dip)" . | |
moreover have "\<not> (rt1 \<approx>\<^bsub>dip\<^esub> rt3)" | |
proof - | |
from \<open>rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2\<close> obtain "\<not>(the (rt2 dip) \<sqsubseteq> the (rt1 dip))" by auto | |
also from \<open>rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3\<close> obtain "\<not>(the (rt3 dip) \<sqsubseteq> the (rt2 dip))" by auto | |
finally have "\<not>(the (rt3 dip) \<sqsubseteq> the (rt1 dip))" . | |
thus ?thesis .. | |
qed | |
ultimately show "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3" .. | |
qed | |
lemma rt_strictly_fresher_irefl [simp]: "\<not> (rt \<sqsubset>\<^bsub>dip\<^esub> rt)" | |
unfolding rt_strictly_fresher_def | |
by clarsimp | |
lemma rt_fresher_trans_rt_strictly_fresher [elim, trans]: | |
assumes "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2" | |
and "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3" | |
shows "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3" | |
proof - | |
from \<open>rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2\<close> have "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" | |
and "\<not>(rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)" | |
unfolding rt_strictly_fresher_def'' by auto | |
from this(1) and \<open>rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3\<close> have "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt3" .. | |
moreover from \<open>\<not>(rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)\<close> have "\<not>(rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)" | |
proof (rule contrapos_nn) | |
assume "rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt1" | |
with \<open>rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3\<close> show "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1" .. | |
qed | |
ultimately show "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3" | |
unfolding rt_strictly_fresher_def'' by auto | |
qed | |
lemma rt_fresher_trans_rt_strictly_fresher' [elim, trans]: | |
assumes "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" | |
and "rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3" | |
shows "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3" | |
proof - | |
from \<open>rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3\<close> have "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3" | |
and "\<not>(rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt2)" | |
unfolding rt_strictly_fresher_def'' by auto | |
from \<open>rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2\<close> and this(1) have "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt3" .. | |
moreover from \<open>\<not>(rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt2)\<close> have "\<not>(rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)" | |
proof (rule contrapos_nn) | |
assume "rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt1" | |
thus "rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" using \<open>rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2\<close> .. | |
qed | |
ultimately show "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3" | |
unfolding rt_strictly_fresher_def'' by auto | |
qed | |
lemma rt_fresher_imp_nsqn_le: | |
assumes "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2" | |
and "ip \<in> kD rt1" | |
and "ip \<in> kD rt2" | |
shows "nsqn rt1 ip \<le> nsqn rt2 ip" | |
using assms(1) | |
by (auto simp add: rt_fresher_def2 [OF assms(2-3)]) | |
lemma rt_strictly_fresher_ltI [intro]: | |
assumes "dip \<in> kD(rt1)" | |
and "dip \<in> kD(rt2)" | |
and "nsqn rt1 dip < nsqn rt2 dip" | |
shows "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2" | |
proof | |
from assms show "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" .. | |
next | |
show "\<not>(rt1 \<approx>\<^bsub>dip\<^esub> rt2)" | |
proof | |
assume "rt1 \<approx>\<^bsub>dip\<^esub> rt2" | |
hence "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1" .. | |
hence "nsqn rt2 dip \<le> nsqn rt1 dip" | |
using \<open>dip \<in> kD(rt2)\<close> \<open>dip \<in> kD(rt1)\<close> | |
by (rule rt_fresher_imp_nsqn_le) | |
with \<open>nsqn rt1 dip < nsqn rt2 dip\<close> show "False" | |
by simp | |
qed | |
qed | |
lemma rt_strictly_fresher_eqI [intro]: | |
assumes "i\<in>kD(rt1)" | |
and "i\<in>kD(rt2)" | |
and "nsqn rt1 i = nsqn rt2 i" | |
and "\<pi>\<^sub>5(the (rt2 i)) < \<pi>\<^sub>5(the (rt1 i))" | |
shows "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2" | |
using assms unfolding rt_strictly_fresher_def' by (auto simp add: kD_nsqn) | |
lemma invalidate_rtsf_left [simp]: | |
"\<And>dests dip rt rt'. dests dip = None \<Longrightarrow> (invalidate rt dests \<sqsubset>\<^bsub>dip\<^esub> rt') = (rt \<sqsubset>\<^bsub>dip\<^esub> rt')" | |
unfolding invalidate_def rt_strictly_fresher_def' | |
by (rule iffI) (auto split: option.split_asm) | |
lemma vD_invalidate_rt_strictly_fresher [simp]: | |
assumes "dip \<in> vD(invalidate rt1 dests)" | |
shows "(invalidate rt1 dests \<sqsubset>\<^bsub>dip\<^esub> rt2) = (rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2)" | |
proof (cases "dip \<in> dom(dests)") | |
assume "dip \<in> dom(dests)" | |
hence "dip \<notin> vD(invalidate rt1 dests)" | |
unfolding invalidate_def vD_def | |
by clarsimp (metis assms option.simps(3) vD_invalidate_vD_not_dests) | |
with \<open>dip \<in> vD(invalidate rt1 dests)\<close> show ?thesis by simp | |
next | |
assume "dip \<notin> dom(dests)" | |
hence "dests dip = None" by auto | |
moreover with \<open>dip \<in> vD(invalidate rt1 dests)\<close> have "dip \<in> vD(rt1)" | |
unfolding invalidate_def vD_def | |
by clarsimp (metis (opaque_lifting, no_types) assms vD_Some vD_invalidate_vD_not_dests) | |
ultimately show ?thesis | |
unfolding invalidate_def rt_strictly_fresher_def' by auto | |
qed | |
lemma rt_strictly_fresher_update_other [elim!]: | |
"\<And>dip ip rt r rt'. \<lbrakk> dip \<noteq> ip; rt \<sqsubset>\<^bsub>dip\<^esub> rt' \<rbrakk> \<Longrightarrow> update rt ip r \<sqsubset>\<^bsub>dip\<^esub> rt'" | |
unfolding rt_strictly_fresher_def' by clarsimp | |
lemma addpreRT_strictly_fresher [simp]: | |
assumes "dip \<in> kD(rt)" | |
shows "(the (addpreRT rt dip npre) \<sqsubset>\<^bsub>ip\<^esub> rt2) = (rt \<sqsubset>\<^bsub>ip\<^esub> rt2)" | |
using assms unfolding rt_strictly_fresher_def' by clarsimp | |
lemma lt_sqn_imp_update_strictly_fresher: | |
assumes "dip \<in> vD (rt2 nhip)" | |
and *: "osn < sqn (rt2 nhip) dip" | |
and **: "rt \<noteq> update rt dip (osn, kno, val, hops, nhip, {})" | |
shows "update rt dip (osn, kno, val, hops, nhip, {}) \<sqsubset>\<^bsub>dip\<^esub> rt2 nhip" | |
unfolding rt_strictly_fresher_def' | |
proof (rule disjI1) | |
from ** have "nsqn (update rt dip (osn, kno, val, hops, nhip, {})) dip = osn" | |
by (rule nsqn_update_changed_kno_val) | |
with \<open>dip\<in>vD(rt2 nhip)\<close> | |
have "nsqn\<^sub>r (the (update rt dip (osn, kno, val, hops, nhip, {}) dip)) = osn" | |
by (simp add: kD_nsqn) | |
also have "osn < sqn (rt2 nhip) dip" by (rule *) | |
also have "sqn (rt2 nhip) dip = nsqn\<^sub>r (the (rt2 nhip dip))" | |
unfolding nsqn\<^sub>r_def using \<open>dip \<in> vD (rt2 nhip)\<close> | |
by - (metis vD_flag_val proj2_eq_sqn proj4_eq_flag vD_iD_gives_kD(1)) | |
finally show "nsqn\<^sub>r (the (update rt dip (osn, kno, val, hops, nhip, {}) dip)) | |
< nsqn\<^sub>r (the (rt2 nhip dip))" . | |
qed | |
lemma dhops_le_hops_imp_update_strictly_fresher: | |
assumes "dip \<in> vD(rt2 nhip)" | |
and sqn: "sqn (rt2 nhip) dip = osn" | |
and hop: "the (dhops (rt2 nhip) dip) \<le> hops" | |
and **: "rt \<noteq> update rt dip (osn, kno, val, Suc hops, nhip, {})" | |
shows "update rt dip (osn, kno, val, Suc hops, nhip, {}) \<sqsubset>\<^bsub>dip\<^esub> rt2 nhip" | |
unfolding rt_strictly_fresher_def' | |
proof (rule disjI2, rule conjI) | |
from ** have "nsqn (update rt dip (osn, kno, val, Suc hops, nhip, {})) dip = osn" | |
by (rule nsqn_update_changed_kno_val) | |
with \<open>dip\<in>vD(rt2 nhip)\<close> | |
have "nsqn\<^sub>r (the (update rt dip (osn, kno, val, Suc hops, nhip, {}) dip)) = osn" | |
by (simp add: kD_nsqn) | |
also have "osn = sqn (rt2 nhip) dip" by (rule sqn [symmetric]) | |
also have "sqn (rt2 nhip) dip = nsqn\<^sub>r (the (rt2 nhip dip))" | |
unfolding nsqn\<^sub>r_def using \<open>dip \<in> vD(rt2 nhip)\<close> | |
by - (metis vD_flag_val proj2_eq_sqn proj4_eq_flag vD_iD_gives_kD(1)) | |
finally show "nsqn\<^sub>r (the (update rt dip (osn, kno, val, Suc hops, nhip, {}) dip)) | |
= nsqn\<^sub>r (the (rt2 nhip dip))" . | |
next | |
have "the (dhops (rt2 nhip) dip) \<le> hops" by (rule hop) | |
also have "hops < hops + 1" by simp | |
also have "hops + 1 = the (dhops (update rt dip (osn, kno, val, Suc hops, nhip, {})) dip)" | |
using ** by simp | |
finally have "the (dhops (rt2 nhip) dip) | |
< the (dhops (update rt dip (osn, kno, val, Suc hops, nhip, {})) dip)" . | |
thus "\<pi>\<^sub>5 (the (rt2 nhip dip)) < \<pi>\<^sub>5 (the (update rt dip (osn, kno, val, Suc hops, nhip, {}) dip))" | |
using \<open>dip \<in> vD(rt2 nhip)\<close> by (simp add: proj5_eq_dhops) | |
qed | |
lemma nsqn_invalidate: | |
assumes "dip \<in> kD(rt)" | |
and "\<forall>ip\<in>dom(dests). ip \<in> vD(rt) \<and> the (dests ip) = inc (sqn rt ip)" | |
shows "nsqn (invalidate rt dests) dip = nsqn rt dip" | |
proof - | |
from \<open>dip \<in> kD(rt)\<close> have "dip \<in> kD(invalidate rt dests)" by simp | |
from assms have "rt \<approx>\<^bsub>dip\<^esub> invalidate rt dests" | |
by (rule rt_fresh_as_inc_invalidate) | |
with \<open>dip \<in> kD(rt)\<close> \<open>dip \<in> kD(invalidate rt dests)\<close> show ?thesis | |
by (simp add: kD_nsqn del: invalidate_kD_inv) | |
(erule(2) rt_fresh_as_nsqnr) | |
qed | |
end | |