Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
:: One-Dimensional Congruence of Segments, Basic Facts and Midpoint Relation | |
:: by Barbara Konstanta, Urszula Kowieska, Grzegorz Lewandowski and | |
:: http://creativecommons.org/licenses/by-sa/3.0/. | |
environ | |
vocabularies AFVECT0, SUBSET_1, XBOOLE_0, RELAT_1, ZFMISC_1, ANALOAF, PARSP_1, | |
DIRAF, STRUCT_0, AFVECT01; | |
notations TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, STRUCT_0, ANALOAF, DIRAF, | |
AFVECT0, RELSET_1; | |
constructors DOMAIN_1, DIRAF, AFVECT0; | |
registrations XBOOLE_0, STRUCT_0, AFVECT0; | |
requirements SUBSET, BOOLE; | |
theorems ZFMISC_1, AFVECT0, STRUCT_0, ANALOAF, DIRAF, XTUPLE_0; | |
schemes RELSET_1; | |
begin | |
reserve AFV for WeakAffVect; | |
reserve a,a9,b,b9,c,d,p,p9,q,q9,r,r9 for Element of AFV; | |
registration | |
let A be non empty set, C be Relation of [:A,A:]; | |
cluster AffinStruct(#A,C#) -> non empty; | |
coherence; | |
end; | |
Lm1: a,b '||' b,c & a<>c implies a,b // b,c | |
proof | |
assume that | |
A1: a,b '||' b,c and | |
A2: a<>c; | |
not a,b // c,b by A2,AFVECT0:4,7; | |
hence thesis by A1,DIRAF:def 4; | |
end; | |
Lm2: a,b // b,a iff ex p,q st a,b '||' p,q & a,p '||' p,b & a,q '||' q,b | |
proof | |
A1: now | |
given p,q such that | |
A2: a,b '||' p,q and | |
A3: a,p '||' p,b and | |
A4: a,q '||' q,b; | |
now | |
A5: now | |
assume | |
A6: MDist p,q; | |
a,b // p,q or a,b // q,p by A2,DIRAF:def 4; | |
then MDist a,b by A6,AFVECT0:3,15; | |
hence a,b // b,a by AFVECT0:def 2; | |
end; | |
assume | |
A7: a<>b; | |
then a,q // q,b by A4,Lm1; | |
then | |
A8: Mid a,q,b by AFVECT0:def 3; | |
A9: now | |
assume p=q; | |
then a,b // p,p by A2,DIRAF:def 4; | |
hence contradiction by A7,AFVECT0:def 1; | |
end; | |
a,p // p,b by A3,A7,Lm1; | |
then Mid a,p,b by AFVECT0:def 3; | |
hence a,b // b,a by A8,A9,A5,AFVECT0:20; | |
end; | |
hence a,b // b,a by AFVECT0:2; | |
end; | |
now | |
assume | |
A10: a,b // b,a; | |
A11: now | |
assume a<>b; | |
then | |
A12: MDist a,b by A10,AFVECT0:def 2; | |
consider p such that | |
A13: Mid a,p,b by AFVECT0:19; | |
A14: a,p // p,b by A13,AFVECT0:def 3; | |
consider q such that | |
A15: a,b // p,q by AFVECT0:def 1; | |
take p,q; | |
Mid a,q,b by A13,A15,A12,AFVECT0:15,23; | |
then a,q // q,b by AFVECT0:def 3; | |
hence a,b '||' p,q & a,p '||' p,b & a,q '||' q,b by A15,A14,DIRAF:def 4; | |
end; | |
now | |
assume | |
A16: a=b; | |
take p=a,q=a; | |
a,b // p,q by A16,AFVECT0:2; | |
hence a,b '||' p,q & a,p '||' p,b & a,q '||' q,b by A16,DIRAF:def 4; | |
end; | |
hence ex p,q st a,b '||' p,q & a,p '||' p,b & a,q '||' q,b by A11; | |
end; | |
hence thesis by A1; | |
end; | |
Lm3: a,b '||' c,d implies b,a '||' c,d | |
proof | |
assume a,b '||' c,d; | |
then a,b // c,d or a,b // d,c by DIRAF:def 4; | |
then b,a // d,c or b,a // c,d by AFVECT0:7; | |
hence thesis by DIRAF:def 4; | |
end; | |
Lm4: a,b '||' b,a | |
proof | |
a,b // a,b by AFVECT0:1; | |
hence thesis by DIRAF:def 4; | |
end; | |
Lm5: a,b '||' p,p implies a=b | |
proof | |
assume a,b '||' p,p; | |
then a,b // p,p by DIRAF:def 4; | |
hence thesis by AFVECT0:def 1; | |
end; | |
Lm6: for a,b,c,d,p,q holds a,b '||' p,q & c,d '||' p,q implies a,b '||' c,d | |
proof | |
let a,b,c,d,p,q; | |
assume a,b '||' p,q & c,d '||' p,q; | |
then a,b // p,q & c,d // p,q or a,b // p,q & c,d // q,p or a,b // q,p & c,d | |
// p,q or a,b // q,p & c,d // q,p by DIRAF:def 4; | |
then a,b // c,d or a,b // p,q & d,c // p,q or a,b // q,p & d,c // q,p by | |
AFVECT0:7,def 1; | |
then a,b // c,d or a,b // d,c by AFVECT0:def 1; | |
hence thesis by DIRAF:def 4; | |
end; | |
Lm7: ex b st a,b '||' b,c | |
proof | |
consider b such that | |
A1: a,b // b,c by AFVECT0:def 1; | |
take b; | |
thus thesis by A1,DIRAF:def 4; | |
end; | |
Lm8: for a,a9,b,b9,p st a<>a9 & b<>b9 & p,a '||' p,a9 & p,b '||' p,b9 holds a, | |
b '||' a9,b9 | |
proof | |
let a,a9,b,b9,p; | |
assume that | |
A1: a<>a9 and | |
A2: b<>b9 and | |
A3: p,a '||' p,a9 and | |
A4: p,b '||' p,b9; | |
b,p // p,b9 by A2,A4,Lm1,Lm3; | |
then | |
A5: Mid b,p,b9 by AFVECT0:def 3; | |
a,p // p,a9 by A1,A3,Lm1,Lm3; | |
then Mid a,p,a9 by AFVECT0:def 3; | |
then a,b // b9,a9 by A5,AFVECT0:25; | |
hence thesis by DIRAF:def 4; | |
end; | |
Lm9: a=b or ex c st a<>c & a,b '||' b,c or ex p,p9 st p<>p9 & a,b '||' p,p9 & | |
a,p '||' p,b & a,p9 '||' p9,b | |
proof | |
consider c such that | |
A1: a,b // b,c by AFVECT0:def 1; | |
A2: now | |
assume a=c; | |
then consider p,p9 such that | |
A3: a,b '||' p,p9 and | |
A4: a,p '||' p,b & a,p9 '||' p9,b by A1,Lm2; | |
p=p9 implies a=b by A3,Lm5; | |
hence | |
a=b or ex p,p9 st p<>p9 & a,b '||' p,p9 & a,p '||' p,b & a,p9 '||' p9 | |
,b by A3,A4; | |
end; | |
now | |
assume | |
A5: a<>c; | |
a,b '||' b,c by A1,DIRAF:def 4; | |
hence ex c st a<>c & a,b '||' b,c by A5; | |
end; | |
hence thesis by A2; | |
end; | |
Lm10: for a,b,b9,p,p9,c st a,b '||' b,c & b,b9 '||' p,p9 & b,p '||' p,b9 & b, | |
p9 '||' p9,b9 holds a,b9 '||' b9,c | |
proof | |
let a,b,b9,p,p9,c; | |
assume that | |
A1: a,b '||' b,c and | |
A2: b,b9 '||' p,p9 & b,p '||' p,b9 & b,p9 '||' p9,b9; | |
A3: b,b9 // b9,b by A2,Lm2; | |
A4: now | |
assume | |
A5: a,b // b,c; | |
then | |
A6: Mid a,b,c by AFVECT0:def 3; | |
A7: now | |
assume MDist b,b9; | |
then Mid a,b9,c by A6,AFVECT0:23; | |
then a,b9 // b9,c by AFVECT0:def 3; | |
hence thesis by DIRAF:def 4; | |
end; | |
b=b9 implies thesis by A5,DIRAF:def 4; | |
hence thesis by A3,A7,AFVECT0:def 2; | |
end; | |
now | |
assume a,b // c,b; | |
then a=c by AFVECT0:4,7; | |
then a,b9 // c,b9 by AFVECT0:1; | |
hence thesis by DIRAF:def 4; | |
end; | |
hence thesis by A1,A4,DIRAF:def 4; | |
end; | |
Lm11: for a,b,b9,c st a<>c & b<>b9 & a,b '||' b,c & a,b9 '||' b9,c holds ex p, | |
p9 st p<>p9 & b,b9 '||' p,p9 & b,p '||' p,b9 & b,p9 '||' p9,b9 | |
proof | |
let a,b,b9,c; | |
assume that | |
A1: a<>c and | |
A2: b<>b9 and | |
A3: a,b '||' b,c and | |
A4: a,b9 '||' b9,c; | |
a,b9 // b9,c by A1,A4,Lm1; | |
then | |
A5: Mid a,b9,c by AFVECT0:def 3; | |
a,b // b,c by A1,A3,Lm1; | |
then Mid a,b,c by AFVECT0:def 3; | |
then MDist b, b9 by A2,A5,AFVECT0:20; | |
then b,b9 // b9,b by AFVECT0:def 2; | |
then consider p,p9 such that | |
A6: b,b9 '||' p,p9 and | |
A7: b,p '||' p,b9 & b,p9 '||' p9,b9 by Lm2; | |
p<>p9 implies thesis by A6,A7; | |
hence thesis by A2,A6,Lm5; | |
end; | |
Lm12: for a,b,c,p,p9,q,q9 st a,b '||' p,p9 & a,c '||' q,q9 & a,p '||' p,b & a, | |
q '||' q,c & a,p9 '||' p9,b & a,q9 '||' q9,c holds ex r,r9 st b,c '||' r,r9 & b | |
,r '||' r,c & b,r9 '||' r9,c | |
proof | |
let a,b,c,p,p9,q,q9; | |
assume a,b '||' p,p9 & a,c '||' q,q9 & a,p '||' p,b & a,q '||' q,c & a,p9 | |
'||' p9,b & a,q9 '||' q9,c; | |
then a,b // b,a & a,c // c,a by Lm2; | |
then b,c // c,b by AFVECT0:12; | |
hence thesis by Lm2; | |
end; | |
set AFV0 = the WeakAffVect; | |
set X = the carrier of AFV0; | |
set XX = [:X,X:]; | |
defpred P[object,object] means | |
ex a,b,c,d being Element of X st $1=[a,b] & $2=[c,d] | |
& a,b '||' c,d; | |
consider P being Relation of XX,XX such that | |
Lm13: for x,y being object holds [x,y] in P iff x in XX & y in XX & P[x,y] | |
from RELSET_1:sch 1; | |
Lm14: for a,b,c,d being Element of X holds [[a,b],[c,d]] in P iff a,b '||' c,d | |
proof | |
let a,b,c,d be Element of X; | |
A1: [[a,b],[c,d]] in P implies a,b '||' c,d | |
proof | |
assume [[a,b],[c,d]] in P; | |
then consider a9,b9,c9,d9 being Element of X such that | |
A2: [a,b]=[a9,b9] and | |
A3: [c,d]=[c9,d9] and | |
A4: a9,b9 '||' c9,d9 by Lm13; | |
A5: c = c9 by A3,XTUPLE_0:1; | |
a=a9 & b=b9 by A2,XTUPLE_0:1; | |
hence thesis by A3,A4,A5,XTUPLE_0:1; | |
end; | |
[a,b] in XX & [c,d] in XX by ZFMISC_1:def 2; | |
hence thesis by A1,Lm13; | |
end; | |
set WAS = AffinStruct(#the carrier of AFV0,P#); | |
Lm15: for a,b,c,d being Element of AFV0, a9,b9,c9,d9 being Element | |
of WAS st a=a9 & b=b9 & c =c9 & d=d9 holds a,b '||' c,d iff a9,b9 // c9 | |
,d9 | |
proof | |
let a,b,c,d be Element of AFV0, a9,b9,c9,d9 be Element of WAS | |
such that | |
A1: a=a9 & b=b9 & c =c9 & d=d9; | |
A2: now | |
assume a9,b9 // c9,d9; | |
then [[a9,b9],[c9,d9]] in P by ANALOAF:def 2; | |
hence a,b '||' c,d by A1,Lm14; | |
end; | |
now | |
assume a,b '||' c,d; | |
then [[a,b],[c,d]] in the CONGR of WAS by Lm14; | |
hence a9,b9 // c9,d9 by A1,ANALOAF:def 2; | |
end; | |
hence thesis by A2; | |
end; | |
Lm16: now | |
thus ex a9,b9 being Element of WAS st a9<>b9 by STRUCT_0:def 10; | |
thus for a9,b9 being Element of WAS holds a9,b9 // b9,a9 | |
proof | |
let a9,b9 be Element of WAS; | |
reconsider a=a9,b=b9 as Element of AFV0; | |
a,b '||' b,a by Lm4; | |
hence thesis by Lm15; | |
end; | |
thus for a9,b9 being Element of WAS st a9,b9 // a9,a9 holds a9=b9 | |
proof | |
let a9,b9 be Element of WAS such that | |
A1: a9,b9 // a9,a9; | |
reconsider a=a9,b=b9 as Element of AFV0; | |
a,b '||' a,a by A1,Lm15; | |
hence thesis by Lm5; | |
end; | |
thus for a,b,c,d,p,q being Element of WAS st a,b // p,q & c,d // p,q holds a | |
,b // c,d | |
proof | |
let a,b,c,d,p,q be Element of WAS such that | |
A2: a,b // p,q & c,d // p,q; | |
reconsider a1=a,b1=b,c1=c, d1=d,p1=p,q1=q as Element of AFV0; | |
a1,b1 '||' p1,q1 & c1,d1 '||' p1,q1 by A2,Lm15; | |
then a1,b1 '||' c1,d1 by Lm6; | |
hence thesis by Lm15; | |
end; | |
thus for a,c being Element of WAS ex b being Element of WAS st a,b // b,c | |
proof | |
let a,c be Element of WAS; | |
reconsider a1=a,c1=c as Element of AFV0; | |
consider b1 being Element of AFV0 such that | |
A3: a1,b1 '||' b1,c1 by Lm7; | |
reconsider b=b1 as Element of WAS; | |
a,b // b,c by A3,Lm15; | |
hence thesis; | |
end; | |
thus for a,a9,b,b9,p being Element of WAS st a<>a9 & b<>b9& p,a // p,a9 & p, | |
b // p,b9 holds a,b // a9,b9 | |
proof | |
let a,a9,b,b9,p be Element of WAS such that | |
A4: a<>a9 & b<>b9 and | |
A5: p,a // p,a9 & p,b // p,b9; | |
reconsider a1=a,a19=a9,b1=b,b19=b9,p1=p as Element of AFV0; | |
p1,a1 '||' p1,a19 & p1,b1 '||' p1,b19 by A5,Lm15; | |
then a1,b1 '||' a19,b19 by A4,Lm8; | |
hence thesis by Lm15; | |
end; | |
thus for a,b being Element of WAS holds a=b or ex c being Element of WAS st | |
a<>c & a,b // b,c or ex p,p9 being Element of WAS st p<>p9 & a,b // p,p9& a,p | |
// p,b & a,p9 // p9,b | |
proof | |
let a,b be Element of WAS such that | |
A6: not a=b; | |
reconsider a1=a,b1=b as Element of AFV0; | |
A7: now | |
given p1,p19 being Element of AFV0 such that | |
A8: p1<>p19 and | |
A9: a1,b1 '||' p1,p19 & a1,p1 '||' p1,b1 and | |
A10: a1,p19 '||' p19,b1; | |
reconsider p=p1,p9=p19 as Element of WAS; | |
A11: a,p9 // p9,b by A10,Lm15; | |
a,b // p,p9 & a,p // p,b by A9,Lm15; | |
hence | |
ex p,p9 being Element of WAS st p<>p9 & a,b // p,p9& a,p // p,b & a | |
,p9 // p9,b by A8,A11; | |
end; | |
now | |
given c1 being Element of AFV0 such that | |
A12: a1<>c1 and | |
A13: a1,b1 '||' b1,c1; | |
reconsider c =c1 as Element of WAS; | |
a,b // b,c by A13,Lm15; | |
hence ex c being Element of WAS st a<>c & a,b // b,c by A12; | |
end; | |
hence thesis by A6,A7,Lm9; | |
end; | |
thus for a,b,b9,p,p9,c being Element of WAS st a,b // b,c & b,b9 // p,p9 & b | |
,p // p,b9& b,p9 // p9,b9 holds a,b9 // b9,c | |
proof | |
let a,b,b9,p,p9,c be Element of WAS such that | |
A14: a,b // b,c & b,b9 // p,p9 and | |
A15: b,p // p,b9 & b,p9 // p9,b9; | |
reconsider a1=a,b1=b,b19=b9,p1=p, p19=p9,c1=c as Element of AFV0; | |
A16: b1,p1 '||' p1,b19 & b1,p19 '||' p19,b19 by A15,Lm15; | |
a1,b1 '||' b1,c1 & b1,b19 '||' p1,p19 by A14,Lm15; | |
then a1,b19 '||' b19,c1 by A16,Lm10; | |
hence thesis by Lm15; | |
end; | |
thus for a,b,b9,c being Element of WAS st a<>c & b<>b9 & a,b // b,c & a,b9 | |
// b9,c holds ex p,p9 being Element of WAS st p<>p9 & b,b9 // p,p9& b,p // p,b9 | |
& b,p9 // p9,b9 | |
proof | |
let a,b,b9,c be Element of WAS such that | |
A17: a<>c & b<>b9 and | |
A18: a,b // b,c & a,b9 // b9,c; | |
reconsider a1=a,b1=b,b19=b9,c1=c as Element of AFV0; | |
a1,b1 '||' b1,c1 & a1,b19 '||' b19,c1 by A18,Lm15; | |
then consider p1,p19 being Element of AFV0 such that | |
A19: p1<>p19 and | |
A20: b1,b19 '||' p1,p19 & b1,p1 '||' p1,b19 and | |
A21: b1,p19 '||' p19,b19 by A17,Lm11; | |
reconsider p=p1,p9=p19 as Element of WAS; | |
A22: b,p9 // p9,b9 by A21,Lm15; | |
b,b9 // p,p9 & b,p // p,b9 by A20,Lm15; | |
hence thesis by A19,A22; | |
end; | |
thus for a,b,c,p,p9,q,q9 being Element of WAS st a,b // p,p9 & a,c // q,q9 & | |
a,p // p,b & a,q // q,c & a,p9 // p9,b & a,q9 // q9,c holds ex r,r9 being | |
Element of WAS st b,c // r,r9 & b,r // r,c & b,r9 // r9,c | |
proof | |
let a,b,c,p,p9,q,q9 be Element of WAS such that | |
A23: a,b // p,p9 & a,c // q,q9 and | |
A24: a,p // p,b & a,q // q,c and | |
A25: a,p9 // p9,b & a,q9 // q9,c; | |
reconsider a1=a,b1=b,c1=c,p1=p,p19=p9,q1=q,q19=q9 as Element of AFV0; | |
A26: a1,p1 '||' p1,b1 & a1,q1 '||' q1,c1 by A24,Lm15; | |
A27: a1,p19 '||' p19,b1 & a1,q19 '||' q19,c1 by A25,Lm15; | |
a1,b1 '||' p1,p19 & a1,c1 '||' q1,q19 by A23,Lm15; | |
then consider r1,r19 being Element of AFV0 such that | |
A28: b1,c1 '||' r1,r19 & b1,r1 '||' r1,c1 and | |
A29: b1,r19 '||' r19,c1 by A26,A27,Lm12; | |
reconsider r=r1,r9=r19 as Element of WAS; | |
A30: b,r9 // r9,c by A29,Lm15; | |
b,c // r,r9 & b,r // r,c by A28,Lm15; | |
hence thesis by A30; | |
end; | |
end; | |
definition | |
let IT be non empty AffinStruct; | |
attr IT is WeakAffSegm-like means | |
:Def1: | |
(for a,b being Element of IT holds | |
a,b // b,a) & (for a,b being Element of IT st a,b // a,a holds a=b) & (for a,b, | |
c,d,p,q being Element of IT st a,b // p,q & c,d // p,q holds a,b // c,d) & (for | |
a,c being Element of IT ex b being Element of IT st a,b // b,c) & (for a,a9,b, | |
b9,p being Element of IT st a<>a9 & b<>b9& p,a // p,a9 & p,b // p,b9 holds a,b | |
// a9,b9) & (for a,b being Element of IT holds a=b or ex c being Element of IT | |
st ( a<>c & a,b // b,c) or ex p,p9 being Element of IT st (p<>p9 & a,b // p,p9 | |
& a,p // p,b & a,p9 // p9,b)) & (for a,b,b9,p,p9,c being Element of IT st a,b | |
// b,c & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 holds a,b9 // b9,c) & (for | |
a,b,b9,c being Element of IT st a<>c & b<>b9 & a,b // b,c & a,b9 // b9,c holds | |
ex p,p9 being Element of IT st p<>p9 & b,b9 // p,p9& b,p // p,b9 & b,p9 // p9, | |
b9) & for a,b,c,p,p9,q,q9 being Element of IT st a,b // p,p9 & a,c // q,q9 & a, | |
p // p,b & a,q // q,c & a,p9 // p9,b & a,q9 // q9,c holds ex r,r9 being Element | |
of IT st b,c // r,r9 & b,r // r,c & b,r9 // r9,c; | |
end; | |
registration | |
cluster strict WeakAffSegm-like for non trivial AffinStruct; | |
existence | |
proof | |
WAS is WeakAffSegm-like non trivial by Lm16; | |
hence thesis; | |
end; | |
end; | |
definition | |
mode WeakAffSegm is WeakAffSegm-like non trivial AffinStruct; | |
end; | |
:: | |
:: PROPERTIES OF RELATION OF CONGRUENCE OF THE CARRIER | |
:: | |
reserve AFV for WeakAffSegm; | |
reserve a,b,b9,b99,c,d,p,p9 for Element of AFV; | |
theorem Th1: | |
a,b // a,b | |
proof | |
a,b // b,a by Def1; | |
hence thesis by Def1; | |
end; | |
theorem Th2: | |
a,b // c,d implies c,d // a,b | |
proof | |
assume | |
A1: a,b // c,d; | |
c,d // c,d by Th1; | |
hence thesis by A1,Def1; | |
end; | |
theorem Th3: | |
a,b // c,d implies a,b // d,c | |
proof | |
assume | |
A1: a,b // c,d; | |
d,c // c,d by Def1; | |
hence thesis by A1,Def1; | |
end; | |
theorem Th4: | |
a,b // c,d implies b,a // c,d | |
proof | |
assume a,b // c,d; | |
then c,d // a,b by Th2; | |
then c,d // b,a by Th3; | |
hence thesis by Th2; | |
end; | |
theorem Th5: | |
for a,b holds a,a // b,b | |
proof | |
let a,b; | |
now | |
consider c such that | |
A1: a,c // c,b by Def1; | |
assume | |
A2: a<>b; | |
c,a // c,b by A1,Th4; | |
hence thesis by A2,Def1; | |
end; | |
hence thesis by Def1; | |
end; | |
theorem Th6: | |
a,b // c,c implies a=b | |
proof | |
assume | |
A1: a,b // c,c; | |
a,a // c,c by Th5; | |
then a,b // a,a by A1,Def1; | |
hence thesis by Def1; | |
end; | |
theorem Th7: | |
a,b // p,p9 & a,b // b,c & a,p // p,b & a,p9 // p9,b implies a=c | |
proof | |
assume that | |
A1: a,b // p,p9 and | |
A2: a,b // b,c and | |
A3: a,p // p,b and | |
A4: a,p9 // p9,b; | |
p,b // a,p by A3,Th2; | |
then p,b // p,a by Th3; | |
then | |
A5: b,p // p,a by Th4; | |
p9,b // a,p9 by A4,Th2; | |
then p9,b // p9,a by Th3; | |
then | |
A6: b,p9 // p9,a by Th4; | |
b,a // p,p9 by A1,Th4; | |
then a,a // a,c by A2,A5,A6,Def1; | |
then a,c // a,a by Th2; | |
hence thesis by Def1; | |
end; | |
theorem | |
a,b9 // a,b99 & a,b // a,b99 implies b=b9 or b=b99 or b9=b99 | |
proof | |
assume | |
A1: a,b9 // a,b99 & a,b // a,b99; | |
now | |
assume b9<>b99 & b<>b99; | |
then b9,b // b99,b99 by A1,Def1; | |
hence thesis by Th6; | |
end; | |
hence thesis; | |
end; | |
:: | |
:: RELATION OF MAXIMAL DISTANCE AND MIDPOINT RELATION | |
:: | |
definition | |
let AFV; | |
let a,b; | |
pred MDist a,b means | |
ex p,p9 st p<>p9 & a,b // p,p9 & a,p // p,b & a, p9 // p9,b; | |
end; | |
definition | |
let AFV; | |
let a,b,c; | |
pred Mid a,b,c means | |
a=b & b=c & a=c or a=c & MDist a,b or a<>c & a,b // b,c; | |
end; | |
theorem | |
a<>b & not MDist a,b implies ex c st a<>c & a,b // b,c | |
by Def1; | |
theorem | |
MDist a,b & a,b // b,c implies a=c | |
by Th7; | |
theorem | |
MDist a,b implies a<>b | |
by Th2,Th6; | |