Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import analysis.calculus.specific_functions | |
import topology.metric_space.hausdorff_distance | |
import to_mathlib.topology.misc | |
import to_mathlib.topology.nhds_set | |
import to_mathlib.topology.hausdorff_distance | |
import to_mathlib.linear_algebra.basic | |
import local.dual_pair | |
import local.ample | |
import notations | |
/-! | |
# Local partial differential relations and their formal solutions | |
This file defines `rel_loc E F`, the type of first order partial differential relations | |
for maps between two real normed spaces `E` and `F`. | |
To any `R : rel_loc E F` we associate the type `sol R` of maps `f : E β F` of | |
solutions of `R`, and its formal counterpart `formal_sol R`. | |
The h-principle question is whether we can deform any formal solution into a solution. | |
The type of deformations is `htpy_jet_sec E F` (homotopies of 1-jet sections). | |
Implementation note: the time parameter `t` is any real number, but all the homotopies we will | |
construct will be constant for `t β€ 0` and `t β₯ 1`. It looks like this imposes more smoothness | |
constraints at `t = 0` and `t = 1` (requiring flat functions), but this is needed for smooth | |
concatenations anyway. | |
This file also defines the ampleness conditions for these relations. Together with openness, | |
this will guarantee the h-principle (in some other file). | |
-/ | |
noncomputable theory | |
open set function module (dual) real filter | |
open_locale unit_interval topological_space | |
variables (E : Type*) [normed_add_comm_group E] [normed_space β E] (F : Type*) | |
[normed_add_comm_group F] [normed_space β F] | |
@[derive metric_space] | |
def one_jet := E Γ F Γ (E βL[β] F) | |
/-- A first order relation for maps between real vector spaces. -/ | |
def rel_loc := set (one_jet E F) | |
instance : has_mem (E Γ F Γ (E βL[β] F)) (rel_loc E F) := set.has_mem | |
variables {E F} | |
namespace rel_loc | |
/-- The slice of a local relation `R : rel_loc E F` for a dual pair `p` at a jet `ΞΈ` is | |
the set of `w` in `F` such that updating `ΞΈ` using `p` and `w` leads to a jet in `R`. -/ | |
def slice (R : rel_loc E F) (p : dual_pair' E) (ΞΈ : E Γ F Γ (E βL[β] F)) : set F := | |
{w | (ΞΈ.1, ΞΈ.2.1, p.update ΞΈ.2.2 w) β R} | |
/-- A relation is ample if all its slices are ample. -/ | |
def is_ample (R : rel_loc E F) : Prop := β (p : dual_pair' E) (ΞΈ : E Γ F Γ (E βL[β] F)), | |
ample_set (R.slice p ΞΈ) | |
/- FIXME: the proof below is awful. -/ | |
lemma is_ample.mem_hull {R : rel_loc E F} (h : is_ample R) {ΞΈ : E Γ F Γ (E βL[β] F)} | |
(hΞΈ : ΞΈ β R) (v : F) (p) : v β hull (connected_component_in (R.slice p ΞΈ) (ΞΈ.2.2 p.v)) := | |
begin | |
rw h p ΞΈ (ΞΈ.2.2 p.v) _, | |
exact mem_univ _, | |
dsimp [rel_loc.slice], | |
rw p.update_self, | |
cases ΞΈ, | |
cases ΞΈ_snd, | |
exact hΞΈ | |
end | |
/-- A solution to a local relation `R`. -/ | |
@[ext] structure sol (R : rel_loc E F) := | |
(f : E β F) | |
(f_diff : π β f) | |
(is_sol : β x, (x, f x, D f x) β R) | |
variables (E) | |
@[ext] structure jet_sec (F : Type*) [normed_add_comm_group F] [normed_space β F] := | |
(f : E β F) | |
(f_diff : π β f) | |
(Ο : E β E βL[β] F) | |
(Ο_diff : π β Ο) | |
variables {E} | |
def jet_sec.is_formal_sol (π : jet_sec E F) (R : rel_loc E F) : Prop := | |
β x, (x, π.f x, π.Ο x) β R | |
/-- A formal solution to a local relation `R` over a set `U`. -/ | |
@[ext] structure formal_sol (R : rel_loc E F) extends jet_sec E F := | |
(is_sol : β x, (x, f x, Ο x) β R) | |
instance (R : rel_loc E F) : has_coe (formal_sol R) (jet_sec E F):= | |
β¨formal_sol.to_jet_secβ© | |
@[simp] lemma formal_sol.to_jet_sec_eq_coe {R : rel_loc E F} (π : formal_sol R) : | |
π.to_jet_sec = (π : jet_sec E F) := rfl | |
@[simp] lemma formal_sol.coe_is_formal_sol {R : rel_loc E F} (π : formal_sol R) : | |
(π : jet_sec E F).is_formal_sol R := π.is_sol | |
def jet_sec.is_formal_sol.formal_sol {π : jet_sec E F} {R : rel_loc E F} | |
(h : π.is_formal_sol R) : formal_sol R := | |
{is_sol := h, ..π} | |
/-- Inclusion of solutions into formal solutions. -/ | |
def sol.to_formal_sol {R : rel_loc E F} (π : sol R) : formal_sol R := | |
{ f := π.f, | |
f_diff := π.f_diff, | |
Ο := D π.f, | |
Ο_diff := (cont_diff_top_iff_fderiv.mp π.f_diff).2, | |
is_sol := π.is_sol } | |
end rel_loc | |
namespace rel_loc.jet_sec | |
open rel_loc | |
instance : has_coe_to_fun (jet_sec E F) (Ξ» S, E β F Γ (E βL[β] F)) := | |
β¨Ξ» π, Ξ» x, (π.f x, π.Ο x)β© | |
instance (R : rel_loc E F) (U : set E) : has_coe_to_fun (formal_sol R) (Ξ» S, E β F Γ (E βL[β] F)) := | |
β¨Ξ» π, Ξ» x, (π.f x, π.Ο x)β© | |
@[simp] lemma formal_sol.coe_apply {R : rel_loc E F} (π : formal_sol R) (x : E) : | |
(π : jet_sec E F) x = π x := rfl | |
lemma jet_sec.eq_iff {π π' : jet_sec E F} {x : E} : | |
π x = π' x β π.f x = π'.f x β§ π.Ο x = π'.Ο x := | |
begin | |
split, | |
{ intro h, | |
exact β¨congr_arg prod.fst h, congr_arg prod.snd hβ© }, | |
{ rintros β¨h, h'β©, | |
ext1, | |
exacts [h, h'] } | |
end | |
variables {R : rel_loc E F} | |
lemma formal_sol.eq_iff {π π' : formal_sol R} {x : E} : | |
π x = π' x β π.f x = π'.f x β§ π.Ο x = π'.Ο x := | |
jet_sec.eq_iff | |
/-- The slice associated to a jet section and a dual pair at some point. -/ | |
def slice_at (π : jet_sec E F) (R : rel_loc E F) (p : dual_pair' E) (x : E) : set F := | |
R.slice p (x, π.f x, π.Ο x) | |
/-- The slice associated to a formal solution and a dual pair at some point. -/ | |
def _root_.rel_loc.formal_sol.slice_at (π : formal_sol R) (p : dual_pair' E) (x : E) : set F := | |
R.slice p (x, π.f x, π.Ο x) | |
/-- A jet section `π` is holonomic if its linear map part at `x` | |
is the derivative of its function part at `x`. -/ | |
def is_holonomic_at (π : jet_sec E F) (x : E) : Prop := D π.f x = π.Ο x | |
def _root_.rel_loc.formal_sol.is_holonomic_at (π : formal_sol R) (x : E) : Prop := D π.f x = π.Ο x | |
lemma _root_.rel_loc.formal_sol.is_holonomic_at_congr (π π' : formal_sol R) {s : set E} | |
(h : βαΆ x near s, π x = π' x) : βαΆ x near s, π.is_holonomic_at x β π'.is_holonomic_at x := | |
begin | |
apply h.eventually_nhds_set.mono, | |
intros x hx, | |
have hf : π.f =αΆ [π x] π'.f, | |
{ apply hx.mono, | |
simp_rw formal_sol.eq_iff, | |
tauto }, | |
unfold rel_loc.formal_sol.is_holonomic_at, | |
rw [hf.fderiv_eq, (formal_sol.eq_iff.mp hx.self_of_nhds).2] | |
end | |
lemma _root_.rel_loc.sol.is_holonomic {R : rel_loc E F} (π : sol R) (x : E) : | |
π.to_formal_sol.is_holonomic_at x := | |
by simp [rel_loc.sol.to_formal_sol, rel_loc.formal_sol.is_holonomic_at] | |
/-- A formal solution of `R` over `U` that is holonomic at every point of `U` | |
comes from a genuine solution. -/ | |
def _root_.rel_loc.formal_sol.to_sol (π : formal_sol R) (h : β x, π.to_jet_sec.is_holonomic_at x) : sol R := | |
{ f := π.f, | |
f_diff := π.f_diff, | |
is_sol := Ξ» x, ((h x).symm βΈ (π.is_sol x)) } | |
lemma to_sol_to_formal_sol (π : sol R) : | |
π.to_formal_sol.to_sol (Ξ» x, π.is_holonomic x) = π := | |
by { ext x, refl } | |
/-- A formal solution `π` of `R` is partially holonomic in the direction of some subspace `E'` | |
if its linear map part at `x` is the derivative of its function part at `x` in restriction to | |
`E'`. -/ | |
def is_part_holonomic_at (π : jet_sec E F) (E' : submodule β E) (x : E) := | |
β v β E', D π.f x v = π.Ο x v | |
lemma _root_.filter.eventually.is_part_holonomic_at_congr {π π' : jet_sec E F} {s : set E} | |
(h : βαΆ x near s, π x = π' x) (E' : submodule β E) : | |
βαΆ x near s, π.is_part_holonomic_at E' x β π'.is_part_holonomic_at E' x := | |
begin | |
apply h.eventually_nhds_set.mono, | |
intros x hx, | |
have hf : π.f =αΆ [π x] π'.f, | |
{ apply hx.mono, | |
dsimp only, | |
simp_rw jet_sec.eq_iff, | |
tauto }, | |
unfold rel_loc.jet_sec.is_part_holonomic_at, | |
rw [hf.fderiv_eq, (jet_sec.eq_iff.mp hx.self_of_nhds).2] | |
end | |
lemma is_part_holonomic_at.sup (π : jet_sec E F) {E' E'' : submodule β E} {x : E} | |
(h' : π.is_part_holonomic_at E' x) (h'' : π.is_part_holonomic_at E'' x) : | |
π.is_part_holonomic_at (E' β E'') x := | |
Ξ» v : E, linear_map.eq_on_sup h' h'' | |
lemma _root_.rel_loc.jet_sec.is_part_holonomic_at.mono {π : jet_sec E F} | |
{E' E'' : submodule β E} {x : E} (h : π.is_part_holonomic_at E' x) (h' : E'' β€ E') : | |
π.is_part_holonomic_at E'' x := | |
Ξ» v v_in, h v $ set_like.coe_subset_coe.mpr h' v_in | |
def _root_.rel_loc.formal_sol.is_part_holonomic_at (π : formal_sol R) (E' : submodule β E) (x : E) := | |
β v β E', D π.f x v = π.Ο x v | |
lemma _root_.rel_loc.formal_sol.is_part_holonomic_at.mono {π : formal_sol R} | |
{E' E'' : submodule β E} {x : E} (h : π.is_part_holonomic_at E' x) (h' : E'' β€ E') : | |
π.is_part_holonomic_at E'' x := | |
Ξ» v v_in, h v $ set_like.coe_subset_coe.mpr h' v_in | |
lemma _root_.is_part_holonomic_top {π : jet_sec E F} {x : E} : | |
is_part_holonomic_at π β€ x β is_holonomic_at π x := | |
begin | |
simp only [is_part_holonomic_at, submodule.mem_top, forall_true_left, is_holonomic_at], | |
rw [β funext_iff, continuous_linear_map.coe_fn_injective.eq_iff] | |
end | |
@[simp] lemma is_part_holonomic_bot (π : jet_sec E F) : | |
is_part_holonomic_at π β₯ = Ξ» x, true := | |
begin | |
ext x, | |
simp only [is_part_holonomic_at, submodule.mem_bot, forall_eq, map_zero, eq_self_iff_true] | |
end | |
lemma mem_slice (π : formal_sol R) (p : dual_pair' E) {x : E} : | |
π.Ο x p.v β π.slice_at p x := | |
by simpa [rel_loc.formal_sol.slice_at, rel_loc.slice] using π.is_sol x | |
/-- A formal solution `π` is short for a dual pair `p` at a point `x` if the derivative of | |
the function `π.f` at `x` is in the convex hull of the relevant connected component of the | |
corresponding slice. -/ | |
def is_short_at (π : jet_sec E F) (R : rel_loc E F) (p : dual_pair' E) (x : E) : Prop := | |
D π.f x p.v β hull (connected_component_in (π.slice_at R p x) $ π.Ο x p.v) | |
def _root_.rel_loc.formal_sol.is_short_at (π : formal_sol R)(p : dual_pair' E) (x : E) : Prop := | |
D π.f x p.v β hull (connected_component_in (π.slice_at p x) $ π.Ο x p.v) | |
lemma _root_.rel_loc.is_ample.is_short_at {R : rel_loc E F} (hR : is_ample R) (π : formal_sol R) (p : dual_pair' E) | |
(x : E) : π.is_short_at p x := | |
hR.mem_hull (π.is_sol x) _ p | |
end rel_loc.jet_sec | |
section htpy_jet_sec | |
open rel_loc | |
variables (E F) | |
/-- A homotopy of sections of JΒΉ(E, F). -/ | |
structure htpy_jet_sec := | |
(f : β β E β F) | |
(f_diff : π β βΏf) | |
(Ο : β β E β E βL[β] F) | |
(Ο_diff : π β βΏΟ) | |
variables {E F} {R : rel_loc E F} | |
instance : has_coe_to_fun (htpy_jet_sec E F) (Ξ» S, β β jet_sec E F) := | |
β¨Ξ» S t, | |
{ f := S.f t, | |
f_diff := S.f_diff.comp (cont_diff_const.prod cont_diff_id), | |
Ο := S.Ο t, | |
Ο_diff := S.Ο_diff.comp (cont_diff_const.prod cont_diff_id) }β© | |
namespace htpy_jet_sec | |
lemma cont_diff_f (π : htpy_jet_sec E F) {n : with_top β} : π n βΏπ.f := | |
π.f_diff.of_le le_top | |
lemma cont_diff_Ο (π : htpy_jet_sec E F) {n : with_top β} : π n βΏπ.Ο := | |
π.Ο_diff.of_le le_top | |
end htpy_jet_sec | |
/-- The constant homotopy of formal solutions at a given formal solution. It will be used | |
as junk value for constructions of formal homotopies that need additional assumptions and also | |
for trivial induction initialization. -/ | |
def rel_loc.jet_sec.const_htpy (π : jet_sec E F) : htpy_jet_sec E F := | |
{ f := Ξ» t, π.f, | |
f_diff := π.f_diff.snd', | |
Ο := Ξ» t, π.Ο, | |
Ο_diff := π.Ο_diff.snd' } | |
@[simp] lemma rel_loc.jet_sec.const_htpy_apply (π : jet_sec E F) : | |
β t, π.const_htpy t = π := | |
Ξ» t, by ext x ; refl | |
/-- A smooth step function on `β`. -/ | |
def smooth_step : β β β := Ξ» t, smooth_transition (2 * t - 1/2) | |
lemma smooth_step.smooth : π β smooth_step := | |
smooth_transition.cont_diff.comp $ (cont_diff_id.const_smul (2 : β)).sub cont_diff_const | |
@[simp] | |
lemma smooth_step.zero : smooth_step 0 = 0 := | |
begin | |
apply smooth_transition.zero_of_nonpos, | |
norm_num | |
end | |
@[simp] | |
lemma smooth_step.one : smooth_step 1 = 1 := | |
begin | |
apply smooth_transition.one_of_one_le, | |
norm_num | |
end | |
lemma smooth_step.mem (t : β) : smooth_step t β I := | |
β¨smooth_transition.nonneg _, smooth_transition.le_one _β© | |
lemma smooth_step.abs_le (t : β) : |smooth_step t| β€ 1 := | |
abs_le.mpr β¨by linarith [(smooth_step.mem t).1], smooth_transition.le_one _β© | |
lemma smooth_step.of_lt {t : β} (h : t < 1/4) : smooth_step t = 0 := | |
begin | |
apply smooth_transition.zero_of_nonpos, | |
linarith | |
end | |
lemma smooth_step.of_gt {t : β} (h : 3/4 < t) : smooth_step t = 1 := | |
begin | |
apply smooth_transition.one_of_one_le, | |
linarith | |
end | |
lemma htpy_jet_sec_comp_aux {f g : β β E β F} (hf : π β βΏf) (hg : π β βΏg) | |
(hfg : f 1 = g 0) : | |
π β βΏ(Ξ» t x, if t β€ 1/2 then f (smooth_step $ 2*t) x else g (smooth_step $ 2*t - 1) x : β β E β F) := | |
begin | |
have sβ : π β (Ξ» p : β Γ E, (smooth_step $ 2*p.1, p.2)), | |
{ change π β ((prod.map smooth_step id) β (Ξ» p : β Γ E, (2*p.1, p.2))), | |
apply (smooth_step.smooth.prod_map cont_diff_id).comp, | |
apply cont_diff.prod, | |
apply cont_diff_const.mul cont_diff_fst, | |
apply cont_diff_snd }, | |
replace hf := hf.comp sβ, | |
have sβ : π β (Ξ» p : β Γ E, (smooth_step $ 2*p.1 - 1, p.2)), | |
{ change π β ((prod.map smooth_step id) β (Ξ» p : β Γ E, (2*p.1 - 1, p.2))), | |
apply (smooth_step.smooth.prod_map cont_diff_id).comp, | |
apply cont_diff.prod, | |
apply cont_diff.sub, | |
apply cont_diff_const.mul cont_diff_fst, | |
apply cont_diff_const, | |
apply cont_diff_snd }, | |
replace hg := hg.comp sβ, | |
rw cont_diff_iff_cont_diff_at at *, | |
rintros β¨tβ , xββ©, | |
rcases lt_trichotomy tβ (1/2) with ht|rfl|ht, | |
{ apply (hf (tβ, xβ)).congr_of_eventually_eq, | |
have : (Iio (1/2) : set β) ΓΛ’ univ β π (tβ, xβ), | |
from prod_mem_nhds_iff.mpr β¨Iio_mem_nhds ht, univ_memβ©, | |
filter_upwards [this] with p hp, | |
cases p with t x, | |
replace hp : t < 1/2 := (prod_mk_mem_set_prod_eq.mp hp).1, | |
change ite (t β€ 1 / 2) (f (smooth_step (2 * t)) x) (g (smooth_step (2 * t - 1)) x) = _, | |
rw if_pos hp.le, | |
refl }, | |
{ apply (hf (1/2, xβ)).congr_of_eventually_eq, | |
have : (Ioo (3/8) (5/8) : set β) ΓΛ’ univ β π (1/(2 : β), xβ), | |
{ refine prod_mem_nhds_iff.mpr β¨Ioo_mem_nhds _ _, univ_memβ© ; norm_num }, | |
filter_upwards [this] with p hp, | |
cases p with t x, | |
cases (prod_mk_mem_set_prod_eq.mp hp).1 with lt_t t_lt, | |
change ite (t β€ 1 / 2) (f (smooth_step (2 * t)) x) (g (smooth_step (2 * t - 1)) x) = _, | |
split_ifs, | |
{ refl }, | |
{ change g _ x = f (smooth_step $ 2*t) x, | |
apply congr_fun, | |
rw [show smooth_step (2 * t - 1) = 0, by { apply smooth_step.of_lt, linarith }, | |
show smooth_step (2 * t) = 1, by { apply smooth_step.of_gt, linarith }, hfg] }, }, | |
{ apply (hg (tβ, xβ)).congr_of_eventually_eq, | |
have : (Ioi (1/2) : set β) ΓΛ’ univ β π (tβ, xβ), | |
from prod_mem_nhds_iff.mpr β¨Ioi_mem_nhds ht, univ_memβ©, | |
filter_upwards [this] with p hp, | |
cases p with t x, | |
replace hp : Β¬ (t β€ 1/2) := by push_neg ; exact (prod_mk_mem_set_prod_eq.mp hp).1, | |
change ite (t β€ 1 / 2) (f (smooth_step (2 * t)) x) (g (smooth_step (2 * t - 1)) x) = _, | |
rw if_neg hp, | |
refl } | |
end | |
/- begin | |
have c3 : β {n}, π n (Ξ» t : β, 2 * t) := | |
Ξ» n, cont_diff_const.mul cont_diff_id, | |
have c4 : β {n}, π n βΏ(Ξ» t : β, 2 * t - 1) := | |
Ξ» n, (cont_diff_const.mul cont_diff_id).sub cont_diff_const, | |
have c5 : β {n}, π n (Ξ» t, smooth_step $ 2 * t) := | |
Ξ» n, smooth_transition.cont_diff.comp c3, | |
have c6 : β {n}, π n βΏ(Ξ» t, smooth_step $ 2*t - 1) := | |
Ξ» n, smooth_transition.cont_diff.comp c4, | |
have h1 : β {n}, π n βΏ(Ξ» t, f (smooth_step $ 2*t)) := | |
Ξ» n, hf.compβ c5.fst' cont_diff_snd, | |
have h2 : β {n}, π n βΏ(Ξ» t, g (smooth_step $ 2*t - 1)) := | |
Ξ» n, hg.compβ c6.fst' cont_diff_snd, | |
refine h1.if_le_of_fderiv h2 cont_diff_fst cont_diff_const _, | |
rintro β¨t, xβ© n ht, | |
dsimp only at ht, | |
subst ht, | |
simp [has_uncurry.uncurry], | |
cases n, | |
{ simp [iterated_fderiv_zero_eq_comp, hfg], }, | |
rw [iterated_fderiv_of_partial, iterated_fderiv_of_partial], | |
{ simp [has_uncurry.uncurry, hfg], | |
congr' 1, | |
refine (iterated_fderiv_comp (hf.compβ cont_diff_id cont_diff_const) c5 _).trans _, | |
convert continuous_multilinear_map.comp_zero _, | |
{ ext1 i, refine (iterated_fderiv_comp smooth_transition.cont_diff c3 _).trans _, | |
convert continuous_multilinear_map.zero_comp _, simp }, | |
refine (iterated_fderiv_comp (hg.compβ cont_diff_id cont_diff_const) c6 _).trans _, | |
convert continuous_multilinear_map.comp_zero _, | |
{ ext1 i, refine (iterated_fderiv_comp smooth_transition.cont_diff c4 _).trans _, | |
convert continuous_multilinear_map.zero_comp _, simp [has_uncurry.uncurry] } }, | |
{ exact Ξ» x, h2.compβ cont_diff_const cont_diff_id }, | |
{ exact Ξ» y, h2.compβ cont_diff_id cont_diff_const }, | |
{ exact Ξ» x, h1.compβ cont_diff_const cont_diff_id }, | |
{ exact Ξ» y, h1.compβ cont_diff_id cont_diff_const }, | |
end -/ | |
/-- Concatenation of homotopies of formal solution. The result depend on our choice of | |
a smooth step function in order to keep smoothness with respect to the time parameter. -/ | |
def htpy_jet_sec.comp (π π : htpy_jet_sec E F) (h : π 1 = π 0) : htpy_jet_sec E F := | |
{ f := Ξ» t x, if t β€ 1/2 then π.f (smooth_step $ 2*t) x else π.f (smooth_step $ 2*t - 1) x, | |
f_diff := | |
htpy_jet_sec_comp_aux π.f_diff π.f_diff (show (π 1).f = (π 0).f, by rw h), | |
Ο := Ξ» t x, if t β€ 1/2 then π.Ο (smooth_step $ 2*t) x else π.Ο (smooth_step $ 2*t - 1) x, | |
Ο_diff := | |
htpy_jet_sec_comp_aux π.Ο_diff π.Ο_diff (show (π 1).Ο = (π 0).Ο, by rw h) } | |
@[simp] | |
lemma htpy_jet_sec.comp_of_le (π π : htpy_jet_sec E F) (h) {t : β} (ht : t β€ 1/2) : | |
π.comp π h t = π (smooth_step $ 2*t) := | |
begin | |
dsimp [htpy_jet_sec.comp], | |
ext x, | |
change (if t β€ 1/2 then _ else _) = _, | |
rw if_pos ht, | |
refl, | |
ext1 x, | |
change (if t β€ 1 / 2 then _ else _) = (π _).Ο x, | |
rw if_pos ht, | |
refl | |
end | |
@[simp] | |
lemma htpy_jet_sec.comp_0 (π π : htpy_jet_sec E F) (h) : π.comp π h 0 = π 0 := | |
begin | |
rw htpy_jet_sec.comp_of_le _ _ h (by norm_num : (0 : β) β€ 1/2), | |
simp | |
end | |
@[simp] | |
lemma htpy_jet_sec.comp_of_not_le (π π : htpy_jet_sec E F) (h) {t : β} (ht : Β¬ t β€ 1/2) : | |
π.comp π h t = π (smooth_step $ 2*t - 1) := | |
begin | |
dsimp [htpy_jet_sec.comp], | |
ext x, | |
change (if t β€ 1/2 then _ else _) = _, | |
rw if_neg ht, | |
refl, | |
ext1 x, | |
change (if t β€ 1 / 2 then _ else _) = (π _).Ο x, | |
rw if_neg ht, | |
refl | |
end | |
@[simp] | |
lemma htpy_jet_sec.comp_1 (π π : htpy_jet_sec E F) (h) : π.comp π h 1 = π 1 := | |
begin | |
rw htpy_jet_sec.comp_of_not_le _ _ h (by norm_num : Β¬ (1 : β) β€ 1/2), | |
norm_num | |
end | |
end htpy_jet_sec | |
section immersions | |
open rel_loc submodule finite_dimensional | |
local notation `dim` := finrank β | |
variables (E F) | |
def rel_immersion_loc : rel_loc E F := | |
{p | injective p.2.2} | |
variables {E F} [finite_dimensional β E] [finite_dimensional β F] | |
-- TODO: cleanup the next proof | |
lemma rel_immersion_loc.ample (h : finrank β E < finrank β F): is_ample (rel_immersion_loc E F) := | |
begin | |
rintros p β¨e, f, Οβ© w hw, | |
have : (rel_immersion_loc E F).slice p (e, f, Ο) = (map Ο.to_linear_map p.Ο.ker)αΆ, | |
{ ext w', | |
change injective (p.update Ο w') β w' β Ο '' p.Ο.ker, | |
split, | |
{ rintros h β¨u, hu, rflβ©, | |
have : p.update Ο (Ο u) p.v = Ο u, | |
exact p.update_v Ο (Ο u), | |
conv_rhs at this { rw β p.update_ker_pi Ο (Ο u) hu }, | |
rw β h this at hu, | |
simp only [set_like.mem_coe, continuous_linear_map.mem_ker] at hu, | |
rw p.pairing at hu, | |
linarith}, | |
{ intros h u u' huu', | |
rcases p.decomp u with β¨a, ha, t, rflβ©, | |
rcases p.decomp u' with β¨a', ha', t', rflβ©, | |
suffices : (t - t') β’ p.v = a' - a, | |
{ rw [sub_smul] at this, | |
rw eq_add_of_sub_eq' this, | |
abel }, | |
have : Ο a + t β’ w' = Ο a' + t' β’ w', | |
by simpa [(p.update Ο w').map_add, ha, ha'] using huu', | |
have hw' : (t -t') β’ w' = Ο (a' - a), | |
{ rw [sub_smul, Ο.map_sub], | |
rw eq_sub_of_add_eq this, | |
abel }, | |
have haa' : a' - a β p.Ο.ker := p.Ο.ker.sub_mem ha' ha, | |
have ht : t - t' = 0, | |
{ by_contra' ht, | |
apply h, | |
refine β¨(t - t')β»ΒΉ β’ (a' - a), p.Ο.ker.smul_mem _ haa', _β©, | |
have := congr_arg (Ξ» u : F, (t - t')β»ΒΉ β’ u) hw', | |
simp [ht] at this, | |
rwa [β Ο.map_sub, β Ο.map_smul, eq_comm] at this }, | |
rw [eq_comm, ht, zero_smul] at hw' β’, | |
rw [β p.update_ker_pi Ο w haa', β (p.update Ο w).map_zero] at hw', | |
exact hw hw' } }, | |
rw this at *, | |
apply ample_of_two_le_codim _ _ hw, | |
suffices : 2 β€ dim (F β§Έ map Ο.to_linear_map p.Ο.ker), | |
{ rw β finrank_eq_dim, | |
exact_mod_cast this }, | |
have := finrank_quotient_add_finrank (map Ο.to_linear_map p.Ο.ker), | |
apply le_of_add_le_add_right, | |
rw this, | |
have := calc | |
dim (map Ο.to_linear_map p.Ο.ker) β€ dim p.Ο.ker : finrank_map_le β Ο.to_linear_map p.Ο.ker | |
... < dim E : finrank_lt (le_top.lt_of_ne p.ker_pi_ne_top), | |
linarith | |
end | |
end immersions | |