Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import geometry.manifold.cont_mdiff | |
import global.indexing | |
import to_mathlib.topology.paracompact | |
import to_mathlib.topology.local_homeomorph | |
import to_mathlib.geometry.manifold.charted_space | |
noncomputable theory | |
open set equiv | |
open_locale manifold topological_space | |
section general | |
variables {π : Type*} [nontrivially_normed_field π] | |
{E : Type*} [normed_add_comm_group E] [normed_space π E] | |
{H : Type*} [topological_space H] | |
(I : model_with_corners π E H) | |
(M : Type*) [topological_space M] [charted_space H M] [smooth_manifold_with_corners I M] | |
{E' : Type*} [normed_add_comm_group E'] [normed_space π E'] | |
{H' : Type*} [topological_space H'] | |
(I' : model_with_corners π E' H') | |
(M' : Type*) [topological_space M'] [charted_space H' M'] [smooth_manifold_with_corners I' M'] | |
structure open_smooth_embedding := | |
(to_fun : M β M') | |
(inv_fun : M' β M) | |
(left_inv' : β{x}, inv_fun (to_fun x) = x) | |
(right_inv' : β{x}, x β range to_fun β to_fun (inv_fun x) = x) | |
(open_map : is_open_map to_fun) | |
(smooth_to : smooth I I' to_fun) | |
(smooth_inv : smooth_on I' I inv_fun (range to_fun)) | |
instance : has_coe_to_fun (open_smooth_embedding I M I' M') (Ξ» _, M β M') := | |
β¨open_smooth_embedding.to_funβ© | |
namespace open_smooth_embedding | |
variables {I I' M M'} (f : open_smooth_embedding I M I' M') | |
@[simp] lemma left_inv (x : M) : f.inv_fun (f x) = x := by apply f.left_inv' | |
@[simp] lemma inv_fun_comp_coe : f.inv_fun β f = id := funext f.left_inv | |
@[simp] lemma right_inv {y : M'} (hy : y β range f) : f (f.inv_fun y) = y := f.right_inv' hy | |
lemma coe_comp_inv_fun_eventually_eq (x : M) : f β f.inv_fun =αΆ [π (f x)] id := | |
filter.eventually_of_mem (f.open_map.range_mem_nhds x) $ Ξ» y hy, f.right_inv' hy | |
lemma is_open_range : is_open (range f) := | |
f.open_map.is_open_range | |
lemma smooth_at_inv {y : M'} (hy : y β range f) : smooth_at I' I f.inv_fun y := | |
(f.smooth_inv y hy).cont_mdiff_at $ f.is_open_range.mem_nhds hy | |
/- Note that we are slightly abusing the fact that `tangent_space I x` and | |
`tangent_space I (f.inv_fun (f x))` are both definitionally `E` below. -/ | |
def fderiv (x : M) : tangent_space I x βL[π] tangent_space I' (f x) := | |
have hβ : mdifferentiable_at I' I f.inv_fun (f x) := ((f.smooth_inv (f x) (mem_range_self x) | |
).mdifferentiable_within_at le_top).mdifferentiable_at (f.open_map.range_mem_nhds x), | |
have hβ : mdifferentiable_at I I' f x := f.smooth_to.cont_mdiff.mdifferentiable le_top _, | |
continuous_linear_equiv.equiv_of_inverse | |
(mfderiv I I' f x) | |
(mfderiv I' I f.inv_fun (f x)) | |
begin | |
intros v, | |
rw [β continuous_linear_map.comp_apply, β mfderiv_comp x hβ hβ, f.inv_fun_comp_coe, mfderiv_id, | |
continuous_linear_map.coe_id', id.def], | |
end | |
begin | |
intros v, | |
have hx : x = f.inv_fun (f x), { rw f.left_inv, }, | |
have hx' : f (f.inv_fun (f x)) = f x, { rw f.left_inv, }, | |
rw hx at hβ, | |
rw [hx, hx', β continuous_linear_map.comp_apply, β mfderiv_comp (f x) hβ hβ, ((has_mfderiv_at_id | |
I' (f x)).congr_of_eventually_eq (f.coe_comp_inv_fun_eventually_eq x)).mfderiv, | |
continuous_linear_map.coe_id', id.def], | |
end | |
@[simp] lemma fderiv_coe (x : M) : | |
(f.fderiv x : tangent_space I x βL[π] tangent_space I' (f x)) = mfderiv I I' f x := | |
by { ext, refl } | |
@[simp] lemma fderiv_symm_coe (x : M) : | |
((f.fderiv x).symm : tangent_space I' (f x) βL[π] tangent_space I x) = | |
mfderiv I' I f.inv_fun (f x) := | |
by { ext, refl } | |
lemma fderiv_symm_coe' {x : M'} (hx : x β range f) : | |
((f.fderiv (f.inv_fun x)).symm : tangent_space I' (f (f.inv_fun x)) βL[π] | |
tangent_space I (f.inv_fun x)) = | |
(mfderiv I' I f.inv_fun x : tangent_space I' x βL[π] tangent_space I (f.inv_fun x)) := | |
by rw [fderiv_symm_coe, f.right_inv hx] | |
end open_smooth_embedding | |
end general | |
section without_boundary | |
open metric (hiding mem_nhds_iff) function | |
universe u | |
variables {π : Type*} [nontrivially_normed_field π] | |
{E : Type*} [normed_add_comm_group E] [normed_space π E] | |
(M : Type u) [topological_space M] [charted_space E M] [smooth_manifold_with_corners π(π, E) M] | |
[t2_space M] [locally_compact_space M] [sigma_compact_space M] | |
/- Clearly should be generalised. Maybe what we really want is a theory of local diffeomorphisms. -/ | |
def open_smooth_embedding_of_subset_chart_target {x : M} | |
{f : open_smooth_embedding π(π, E) E π(π, E) E} (hf : range f β (chart_at E x).target) : | |
open_smooth_embedding π(π, E) E π(π, E) M := | |
{ to_fun := (chart_at E x).symm β f, | |
inv_fun := f.inv_fun β (chart_at E x), | |
left_inv' := Ξ» y, by simp [hf (mem_range_self y)], | |
right_inv' := by { rintros - β¨y, rflβ©, simp [hf (mem_range_self y)], }, | |
open_map := Ξ» u hu, | |
begin | |
rw image_comp, | |
apply local_homeomorph.image_open_of_open _ (f.open_map _ hu), | |
rw β image_univ at hf, | |
exact (monotone_image (subset_univ u)).trans hf, | |
end, | |
smooth_to := cont_mdiff_on_chart_symm.comp_cont_mdiff f.smooth_to (range_subset_iff.mp hf), | |
smooth_inv := | |
begin | |
have hf' : range ((chart_at E x).symm β f) β (chart_at E x) β»ΒΉ' range f, | |
{ rw [range_comp, β image_subset_iff], | |
exact (local_equiv.image_symm_image_of_subset_target _ hf).subset }, | |
refine f.smooth_inv.comp _ hf', | |
have hf'' : range ((chart_at E x).symm β f) β (chart_at E x).source, | |
{ rw [range_comp, β local_equiv.symm_image_target_eq_source], | |
exact (monotone_image hf).trans subset.rfl, }, | |
exact cont_mdiff_on_chart.mono hf'', | |
end } | |
@[simp] lemma coe_open_smooth_embedding_of_subset_chart_target {x : M} | |
{f : open_smooth_embedding π(π, E) E π(π, E) E} (hf : range f β (chart_at E x).target) : | |
(open_smooth_embedding_of_subset_chart_target M hf : E β M) = (chart_at E x).symm β f := | |
rfl | |
variables (π) | |
/-- Provided `0 < r`, this is a diffeomorphism from `E` onto the open ball of radius `r` in `E` | |
centred at a point `c` and sending `0` to `c`. | |
The values for `r β€ 0` are junk. -/ | |
def open_smooth_embedding_to_ball (c : E) (r : β) : | |
open_smooth_embedding π(π, E) E π(π, E) E := | |
sorry | |
@[simp] lemma open_smooth_embedding_to_ball_apply_zero (c : E) {r : β} (h : 0 < r) : | |
open_smooth_embedding_to_ball π c r 0 = c := | |
sorry | |
@[simp] lemma range_open_smooth_embedding_to_ball (c : E) {r : β} (h : 0 < r) : | |
range (open_smooth_embedding_to_ball π c r) = ball c r := | |
sorry | |
variables (E) {M} | |
lemma nice_atlas' | |
{ΞΉ : Type*} {s : ΞΉ β set M} (s_op : β j, is_open $ s j) (cov : (β j, s j) = univ) : | |
β (ΞΉ' : Type u) (t : set ΞΉ') (Ο : t β open_smooth_embedding π(π, E) E π(π, E) M), | |
t.countable β§ | |
(β i, β j, range (Ο i) β s j) β§ | |
locally_finite (Ξ» i, range (Ο i)) β§ | |
(β i, Ο i '' ball 0 1) = univ := | |
begin | |
let W : M β β β set M := Ξ» x r, | |
(chart_at E x).symm β open_smooth_embedding_to_ball π (chart_at E x x) r '' (ball 0 1), | |
let B : M β β β set M := charted_space.ball E, | |
let p : M β β β Prop := | |
Ξ» x r, 0 < r β§ ball (chart_at E x x) r β (chart_at E x).target β§ β j, B x r β s j, | |
have hWβ : β x r, p x r β x β W x r := Ξ» x r h, β¨0, by simp, by simp [h.1]β©, | |
have hWβ : β x r, p x r β is_open (W x r), | |
{ rintros x r β¨hβ, hβ, -, -β©, | |
simp only [W], | |
have aux : | |
open_smooth_embedding_to_ball π (chart_at E x x) r '' ball 0 1 β (chart_at E x).target := | |
subset.trans ((image_subset_range _ _).trans (by simp [hβ])) hβ, | |
rw [image_comp, local_homeomorph.is_open_symm_image_iff_of_subset_target _ aux], | |
exact open_smooth_embedding.open_map _ _ is_open_ball, }, | |
have hB : β x, (π x).has_basis (p x) (B x) := | |
Ξ» x, charted_space.nhds_has_basis_balls_of_open_cov E x s_op cov, | |
have hp : β i r, p i r β 0 < r := Ξ» i r h, h.1, | |
obtain β¨t, htβ, htβ, htβ, htββ© := | |
exists_countable_locally_finite_cover surjective_id hp hWβ hWβ hB, | |
refine β¨M Γ β, t, Ξ» z, _, htβ, Ξ» z, _, _, _β©, | |
{ have h : range (open_smooth_embedding_to_ball π (chart_at E z.1.1 z.1.1) z.1.2) β | |
(chart_at E z.1.1).target, | |
{ have aux : 0 < z.val.snd := hp _ _ (htβ _ z.2), | |
simpa only [range_open_smooth_embedding_to_ball, aux] using (htβ _ z.2).2.1, }, | |
exact open_smooth_embedding_of_subset_chart_target M h, }, | |
{ have aux : 0 < (z : M Γ β).snd := hp _ _ (htβ _ z.2), | |
simp only [subtype.val_eq_coe, coe_open_smooth_embedding_of_subset_chart_target], | |
simp only [range_comp, range_open_smooth_embedding_to_ball, aux], | |
exact (htβ z.1 z.2).2.2, }, | |
{ convert htβ, | |
ext1 z, | |
have aux : 0 < (z : M Γ β).snd := hp _ _ (htβ _ z.2), | |
simp only [subtype.val_eq_coe, coe_open_smooth_embedding_of_subset_chart_target], | |
simpa only [range_comp, range_open_smooth_embedding_to_ball, aux], }, | |
{ simpa only [Union_coe_set] using htβ, }, | |
end | |
variables [nonempty M] | |
lemma nice_atlas {ΞΉ : Type*} {s : ΞΉ β set M} (s_op : β j, is_open $ s j) (cov : (β j, s j) = univ) : | |
β n, β Ο : index_type n β open_smooth_embedding π(π, E) E π(π, E) M, | |
(β i, β j, range (Ο i) β s j) β§ | |
locally_finite (Ξ» i, range (Ο i)) β§ | |
(β i, Ο i '' ball 0 1) = univ := | |
begin | |
obtain β¨ΞΉ', t, Ο, hβ, hβ, hβ, hββ© := nice_atlas' π E s_op cov, | |
have htne : t.nonempty, | |
{ by_contra contra, | |
simp only [not_nonempty_iff_eq_empty.mp contra, Union_false, Union_coe_set, Union_empty, | |
@eq_comm _ _ univ, univ_eq_empty_iff] at hβ, | |
exact not_is_empty_of_nonempty M hβ, }, | |
obtain β¨n, β¨fnβ©β© := (set.countable_iff_exists_nonempty_index_type_equiv htne).mp hβ, | |
refine β¨n, Ο β fn, Ξ» i, hβ (fn i), hβ.comp_injective fn.injective, _β©, | |
rwa fn.surjective.Union_comp (Ξ» i, Ο i '' ball 0 1), | |
end | |
end without_boundary | |