Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
I think it's all done!
fc5e983
raw
history blame
9.83 kB
import geometry.manifold.cont_mdiff
import global.indexing
import to_mathlib.topology.paracompact
import to_mathlib.topology.local_homeomorph
import to_mathlib.geometry.manifold.charted_space
noncomputable theory
open set equiv
open_locale manifold topological_space
section general
variables {π•œ : Type*} [nontrivially_normed_field π•œ]
{E : Type*} [normed_add_comm_group E] [normed_space π•œ E]
{H : Type*} [topological_space H]
(I : model_with_corners π•œ E H)
(M : Type*) [topological_space M] [charted_space H M] [smooth_manifold_with_corners I M]
{E' : Type*} [normed_add_comm_group E'] [normed_space π•œ E']
{H' : Type*} [topological_space H']
(I' : model_with_corners π•œ E' H')
(M' : Type*) [topological_space M'] [charted_space H' M'] [smooth_manifold_with_corners I' M']
structure open_smooth_embedding :=
(to_fun : M β†’ M')
(inv_fun : M' β†’ M)
(left_inv' : βˆ€{x}, inv_fun (to_fun x) = x)
(right_inv' : βˆ€{x}, x ∈ range to_fun β†’ to_fun (inv_fun x) = x)
(open_map : is_open_map to_fun)
(smooth_to : smooth I I' to_fun)
(smooth_inv : smooth_on I' I inv_fun (range to_fun))
instance : has_coe_to_fun (open_smooth_embedding I M I' M') (Ξ» _, M β†’ M') :=
⟨open_smooth_embedding.to_fun⟩
namespace open_smooth_embedding
variables {I I' M M'} (f : open_smooth_embedding I M I' M')
@[simp] lemma left_inv (x : M) : f.inv_fun (f x) = x := by apply f.left_inv'
@[simp] lemma inv_fun_comp_coe : f.inv_fun ∘ f = id := funext f.left_inv
@[simp] lemma right_inv {y : M'} (hy : y ∈ range f) : f (f.inv_fun y) = y := f.right_inv' hy
lemma coe_comp_inv_fun_eventually_eq (x : M) : f ∘ f.inv_fun =αΆ [𝓝 (f x)] id :=
filter.eventually_of_mem (f.open_map.range_mem_nhds x) $ Ξ» y hy, f.right_inv' hy
lemma is_open_range : is_open (range f) :=
f.open_map.is_open_range
lemma smooth_at_inv {y : M'} (hy : y ∈ range f) : smooth_at I' I f.inv_fun y :=
(f.smooth_inv y hy).cont_mdiff_at $ f.is_open_range.mem_nhds hy
/- Note that we are slightly abusing the fact that `tangent_space I x` and
`tangent_space I (f.inv_fun (f x))` are both definitionally `E` below. -/
def fderiv (x : M) : tangent_space I x ≃L[π•œ] tangent_space I' (f x) :=
have h₁ : mdifferentiable_at I' I f.inv_fun (f x) := ((f.smooth_inv (f x) (mem_range_self x)
).mdifferentiable_within_at le_top).mdifferentiable_at (f.open_map.range_mem_nhds x),
have hβ‚‚ : mdifferentiable_at I I' f x := f.smooth_to.cont_mdiff.mdifferentiable le_top _,
continuous_linear_equiv.equiv_of_inverse
(mfderiv I I' f x)
(mfderiv I' I f.inv_fun (f x))
begin
intros v,
rw [← continuous_linear_map.comp_apply, ← mfderiv_comp x h₁ hβ‚‚, f.inv_fun_comp_coe, mfderiv_id,
continuous_linear_map.coe_id', id.def],
end
begin
intros v,
have hx : x = f.inv_fun (f x), { rw f.left_inv, },
have hx' : f (f.inv_fun (f x)) = f x, { rw f.left_inv, },
rw hx at hβ‚‚,
rw [hx, hx', ← continuous_linear_map.comp_apply, ← mfderiv_comp (f x) hβ‚‚ h₁, ((has_mfderiv_at_id
I' (f x)).congr_of_eventually_eq (f.coe_comp_inv_fun_eventually_eq x)).mfderiv,
continuous_linear_map.coe_id', id.def],
end
@[simp] lemma fderiv_coe (x : M) :
(f.fderiv x : tangent_space I x β†’L[π•œ] tangent_space I' (f x)) = mfderiv I I' f x :=
by { ext, refl }
@[simp] lemma fderiv_symm_coe (x : M) :
((f.fderiv x).symm : tangent_space I' (f x) β†’L[π•œ] tangent_space I x) =
mfderiv I' I f.inv_fun (f x) :=
by { ext, refl }
lemma fderiv_symm_coe' {x : M'} (hx : x ∈ range f) :
((f.fderiv (f.inv_fun x)).symm : tangent_space I' (f (f.inv_fun x)) β†’L[π•œ]
tangent_space I (f.inv_fun x)) =
(mfderiv I' I f.inv_fun x : tangent_space I' x β†’L[π•œ] tangent_space I (f.inv_fun x)) :=
by rw [fderiv_symm_coe, f.right_inv hx]
end open_smooth_embedding
end general
section without_boundary
open metric (hiding mem_nhds_iff) function
universe u
variables {π•œ : Type*} [nontrivially_normed_field π•œ]
{E : Type*} [normed_add_comm_group E] [normed_space π•œ E]
(M : Type u) [topological_space M] [charted_space E M] [smooth_manifold_with_corners π“˜(π•œ, E) M]
[t2_space M] [locally_compact_space M] [sigma_compact_space M]
/- Clearly should be generalised. Maybe what we really want is a theory of local diffeomorphisms. -/
def open_smooth_embedding_of_subset_chart_target {x : M}
{f : open_smooth_embedding π“˜(π•œ, E) E π“˜(π•œ, E) E} (hf : range f βŠ† (chart_at E x).target) :
open_smooth_embedding π“˜(π•œ, E) E π“˜(π•œ, E) M :=
{ to_fun := (chart_at E x).symm ∘ f,
inv_fun := f.inv_fun ∘ (chart_at E x),
left_inv' := Ξ» y, by simp [hf (mem_range_self y)],
right_inv' := by { rintros - ⟨y, rfl⟩, simp [hf (mem_range_self y)], },
open_map := Ξ» u hu,
begin
rw image_comp,
apply local_homeomorph.image_open_of_open _ (f.open_map _ hu),
rw ← image_univ at hf,
exact (monotone_image (subset_univ u)).trans hf,
end,
smooth_to := cont_mdiff_on_chart_symm.comp_cont_mdiff f.smooth_to (range_subset_iff.mp hf),
smooth_inv :=
begin
have hf' : range ((chart_at E x).symm ∘ f) βŠ† (chart_at E x) ⁻¹' range f,
{ rw [range_comp, ← image_subset_iff],
exact (local_equiv.image_symm_image_of_subset_target _ hf).subset },
refine f.smooth_inv.comp _ hf',
have hf'' : range ((chart_at E x).symm ∘ f) βŠ† (chart_at E x).source,
{ rw [range_comp, ← local_equiv.symm_image_target_eq_source],
exact (monotone_image hf).trans subset.rfl, },
exact cont_mdiff_on_chart.mono hf'',
end }
@[simp] lemma coe_open_smooth_embedding_of_subset_chart_target {x : M}
{f : open_smooth_embedding π“˜(π•œ, E) E π“˜(π•œ, E) E} (hf : range f βŠ† (chart_at E x).target) :
(open_smooth_embedding_of_subset_chart_target M hf : E β†’ M) = (chart_at E x).symm ∘ f :=
rfl
variables (π•œ)
/-- Provided `0 < r`, this is a diffeomorphism from `E` onto the open ball of radius `r` in `E`
centred at a point `c` and sending `0` to `c`.
The values for `r ≀ 0` are junk. -/
def open_smooth_embedding_to_ball (c : E) (r : ℝ) :
open_smooth_embedding π“˜(π•œ, E) E π“˜(π•œ, E) E :=
sorry
@[simp] lemma open_smooth_embedding_to_ball_apply_zero (c : E) {r : ℝ} (h : 0 < r) :
open_smooth_embedding_to_ball π•œ c r 0 = c :=
sorry
@[simp] lemma range_open_smooth_embedding_to_ball (c : E) {r : ℝ} (h : 0 < r) :
range (open_smooth_embedding_to_ball π•œ c r) = ball c r :=
sorry
variables (E) {M}
lemma nice_atlas'
{ΞΉ : Type*} {s : ΞΉ β†’ set M} (s_op : βˆ€ j, is_open $ s j) (cov : (⋃ j, s j) = univ) :
βˆƒ (ΞΉ' : Type u) (t : set ΞΉ') (Ο† : t β†’ open_smooth_embedding π“˜(π•œ, E) E π“˜(π•œ, E) M),
t.countable ∧
(βˆ€ i, βˆƒ j, range (Ο† i) βŠ† s j) ∧
locally_finite (Ξ» i, range (Ο† i)) ∧
(⋃ i, Ο† i '' ball 0 1) = univ :=
begin
let W : M β†’ ℝ β†’ set M := Ξ» x r,
(chart_at E x).symm ∘ open_smooth_embedding_to_ball π•œ (chart_at E x x) r '' (ball 0 1),
let B : M β†’ ℝ β†’ set M := charted_space.ball E,
let p : M β†’ ℝ β†’ Prop :=
Ξ» x r, 0 < r ∧ ball (chart_at E x x) r βŠ† (chart_at E x).target ∧ βˆƒ j, B x r βŠ† s j,
have hWβ‚€ : βˆ€ x r, p x r β†’ x ∈ W x r := Ξ» x r h, ⟨0, by simp, by simp [h.1]⟩,
have hW₁ : βˆ€ x r, p x r β†’ is_open (W x r),
{ rintros x r ⟨h₁, hβ‚‚, -, -⟩,
simp only [W],
have aux :
open_smooth_embedding_to_ball π•œ (chart_at E x x) r '' ball 0 1 βŠ† (chart_at E x).target :=
subset.trans ((image_subset_range _ _).trans (by simp [h₁])) hβ‚‚,
rw [image_comp, local_homeomorph.is_open_symm_image_iff_of_subset_target _ aux],
exact open_smooth_embedding.open_map _ _ is_open_ball, },
have hB : βˆ€ x, (𝓝 x).has_basis (p x) (B x) :=
Ξ» x, charted_space.nhds_has_basis_balls_of_open_cov E x s_op cov,
have hp : βˆ€ i r, p i r β†’ 0 < r := Ξ» i r h, h.1,
obtain ⟨t, ht₁, htβ‚‚, ht₃, htβ‚„βŸ© :=
exists_countable_locally_finite_cover surjective_id hp hWβ‚€ hW₁ hB,
refine ⟨M Γ— ℝ, t, Ξ» z, _, ht₁, Ξ» z, _, _, _⟩,
{ have h : range (open_smooth_embedding_to_ball π•œ (chart_at E z.1.1 z.1.1) z.1.2) βŠ†
(chart_at E z.1.1).target,
{ have aux : 0 < z.val.snd := hp _ _ (htβ‚‚ _ z.2),
simpa only [range_open_smooth_embedding_to_ball, aux] using (htβ‚‚ _ z.2).2.1, },
exact open_smooth_embedding_of_subset_chart_target M h, },
{ have aux : 0 < (z : M Γ— ℝ).snd := hp _ _ (htβ‚‚ _ z.2),
simp only [subtype.val_eq_coe, coe_open_smooth_embedding_of_subset_chart_target],
simp only [range_comp, range_open_smooth_embedding_to_ball, aux],
exact (htβ‚‚ z.1 z.2).2.2, },
{ convert htβ‚„,
ext1 z,
have aux : 0 < (z : M Γ— ℝ).snd := hp _ _ (htβ‚‚ _ z.2),
simp only [subtype.val_eq_coe, coe_open_smooth_embedding_of_subset_chart_target],
simpa only [range_comp, range_open_smooth_embedding_to_ball, aux], },
{ simpa only [Union_coe_set] using ht₃, },
end
variables [nonempty M]
lemma nice_atlas {ΞΉ : Type*} {s : ΞΉ β†’ set M} (s_op : βˆ€ j, is_open $ s j) (cov : (⋃ j, s j) = univ) :
βˆƒ n, βˆƒ Ο† : index_type n β†’ open_smooth_embedding π“˜(π•œ, E) E π“˜(π•œ, E) M,
(βˆ€ i, βˆƒ j, range (Ο† i) βŠ† s j) ∧
locally_finite (Ξ» i, range (Ο† i)) ∧
(⋃ i, Ο† i '' ball 0 1) = univ :=
begin
obtain ⟨ι', t, Ο†, h₁, hβ‚‚, h₃, hβ‚„βŸ© := nice_atlas' π•œ E s_op cov,
have htne : t.nonempty,
{ by_contra contra,
simp only [not_nonempty_iff_eq_empty.mp contra, Union_false, Union_coe_set, Union_empty,
@eq_comm _ _ univ, univ_eq_empty_iff] at hβ‚„,
exact not_is_empty_of_nonempty M hβ‚„, },
obtain ⟨n, ⟨fn⟩⟩ := (set.countable_iff_exists_nonempty_index_type_equiv htne).mp h₁,
refine ⟨n, Ο† ∘ fn, Ξ» i, hβ‚‚ (fn i), h₃.comp_injective fn.injective, _⟩,
rwa fn.surjective.Union_comp (Ξ» i, Ο† i '' ball 0 1),
end
end without_boundary