Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Patrick Massot. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Patrick Massot, Floris van Doorn | |
-/ | |
import local.relation | |
import global.one_jet_bundle | |
/-! | |
# Sections of 1-jet bundles | |
In this file we study sections of 1-jet bundles. This is the direct continuation | |
of `one_jet_bundle.lean` but it imports more files, hence the cut. | |
## Main definitions | |
In this file we consider two manifolds `M` and `M'` with models `I` and `I'` | |
* `one_jet_sec I M I' M'`: smooth sections of `one_jet_bundle I M I' M' โ M` | |
-/ | |
noncomputable theory | |
open set function filter charted_space smooth_manifold_with_corners | |
open_locale topological_space manifold | |
section general | |
variables {๐ : Type*} [nontrivially_normed_field ๐] | |
-- declare a smooth manifold `M` over the pair `(E, H)`. | |
{E : Type*} [normed_add_comm_group E] [normed_space ๐ E] | |
{H : Type*} [topological_space H] (I : model_with_corners ๐ E H) | |
{M : Type*} [topological_space M] [charted_space H M] [smooth_manifold_with_corners I M] | |
-- declare a smooth manifold `M'` over the pair `(E', H')`. | |
{E' : Type*} [normed_add_comm_group E'] [normed_space ๐ E'] | |
{H' : Type*} [topological_space H'] (I' : model_with_corners ๐ E' H') | |
{M' : Type*} [topological_space M'] [charted_space H' M'] [smooth_manifold_with_corners I' M'] | |
variables (I I' M M') | |
/-- A section of a 1-jet bundle seen as a bundle over the source manifold. -/ | |
structure one_jet_sec := | |
(bs : M โ M') | |
(ฯ : โ x : M, tangent_space I x โL[๐] tangent_space I' (bs x)) | |
(smooth' : smooth I ((I.prod I').prod ๐(๐, E โL[๐] E')) (ฮป x, one_jet_bundle.mk x (bs x) (ฯ x))) | |
instance : has_coe_to_fun (one_jet_sec I M I' M') (ฮป S, M โ one_jet_bundle I M I' M') := | |
โจฮป S x, one_jet_bundle.mk x (S.bs x) (S.ฯ x)โฉ | |
variables {I I' M M'} | |
namespace one_jet_sec | |
lemma coe_apply (F : one_jet_sec I M I' M') (x : M) : F x = โจ(x, F.bs x), (F.ฯ x)โฉ := rfl | |
lemma fst_eq (F : one_jet_sec I M I' M') (x : M) : (F x).1 = (x, F.bs x) := rfl | |
lemma snd_eq (F : one_jet_sec I M I' M') (x : M) : (F x).2 = F.ฯ x := rfl | |
lemma is_sec (F : one_jet_sec I M I' M') (x : M) : (F x).1.1 = x := rfl | |
lemma bs_eq (F : one_jet_sec I M I' M') (x : M) : F.bs x = (F x).1.2 := rfl | |
protected lemma smooth (F : one_jet_sec I M I' M') : | |
smooth I ((I.prod I').prod ๐(๐, E โL[๐] E')) F := | |
F.smooth' | |
lemma smooth_eta (F : one_jet_sec I M I' M') : smooth I ((I.prod I').prod ๐(๐, E โL[๐] E')) | |
(ฮป x, one_jet_bundle.mk x (F.bs x) (F x).2 : M โ one_jet_bundle I M I' M') := | |
F.smooth | |
lemma smooth_bs (F : one_jet_sec I M I' M') : smooth I I' F.bs := | |
(smooth_snd.comp $ basic_smooth_vector_bundle_core.smooth_proj _).comp F.smooth | |
/-- A section of Jยน(M, M') is holonomic at (x : M) if its linear map part is the derivative | |
of its base map at x. -/ | |
def is_holonomic_at (F : one_jet_sec I M I' M') (x : M) : Prop := | |
mfderiv I I' (F.bs) x = (F x).2 | |
/-- A section of Jยน(M, M') is holonomic at (x : M) iff it coincides with the 1-jet extension of | |
its base map at x. -/ | |
lemma is_holonomic_at_iff {F : one_jet_sec I M I' M'} {x : M} : | |
F.is_holonomic_at x โ one_jet_ext I I' F.bs x = F x := | |
by simp_rw [is_holonomic_at, one_jet_ext, sigma.ext_iff, heq_iff_eq, F.fst_eq, eq_self_iff_true, | |
true_and] | |
/-- A map from M to Jยน(M, M') is holonomic if its linear map part is the derivative | |
of its base map at every point. -/ | |
def is_holonomic (F : one_jet_sec I M I' M') : Prop := | |
โ x, F.is_holonomic_at x | |
end one_jet_sec | |
/-- The one-jet extension of a function, seen as a section of the 1-jet bundle. -/ | |
def one_jet_ext_sec (f : C^โโฎI, M; I', M'โฏ) : one_jet_sec I M I' M' := | |
โจf, mfderiv I I' f, f.smooth.one_jet_extโฉ | |
end general | |
section real | |
variables | |
{E : Type*} [normed_add_comm_group E] [normed_space โ E] | |
{H : Type*} [topological_space H] (I : model_with_corners โ E H) | |
(M : Type*) [topological_space M] [charted_space H M] [smooth_manifold_with_corners I M] | |
{E' : Type*} [normed_add_comm_group E'] [normed_space โ E'] | |
{H' : Type*} [topological_space H'] (I' : model_with_corners โ E' H') | |
(M' : Type*) [topological_space M'] [charted_space H' M'] [smooth_manifold_with_corners I' M'] | |
{F : Type*} [normed_add_comm_group F] [normed_space โ F] | |
{G : Type*} [topological_space G] (J : model_with_corners โ F G) | |
(N : Type*) [topological_space N] [charted_space G N] [smooth_manifold_with_corners J N] | |
{F' : Type*} [normed_add_comm_group F'] [normed_space โ F'] | |
{G' : Type*} [topological_space G'] (J' : model_with_corners โ F' G') | |
(N' : Type*) [topological_space N'] [charted_space G' N'] [smooth_manifold_with_corners J' N'] | |
/-- A family of jet sections indexed by manifold `N` is a function from `N` into jet sections | |
in such a way that the function is smooth as a function of all arguments. -/ | |
structure family_one_jet_sec := | |
(bs : N โ M โ M') | |
(ฯ : โ (n : N) (m : M), tangent_space I m โL[โ] tangent_space I' (bs n m)) | |
(smooth' : smooth (J.prod I) ((I.prod I').prod ๐(โ, E โL[โ] E')) | |
(ฮป p : N ร M, one_jet_bundle.mk p.2 (bs p.1 p.2) (ฯ p.1 p.2))) | |
instance : has_coe_to_fun (family_one_jet_sec I M I' M' J N) (ฮป S, N โ one_jet_sec I M I' M') := | |
โจฮป S t, | |
{ bs := S.bs t, | |
ฯ := S.ฯ t, | |
smooth' := ฮป x, (S.smooth' (t, x)).comp x $ smooth_at_const.prod_mk smooth_at_id }โฉ | |
namespace family_one_jet_sec | |
variables {I M I' M' J N J' N'} | |
protected lemma smooth (S : family_one_jet_sec I M I' M' J N) : | |
smooth (J.prod I) ((I.prod I').prod ๐(โ, E โL[โ] E')) (ฮป p : N ร M, S p.1 p.2) := S.smooth' | |
lemma smooth_bs (S : family_one_jet_sec I M I' M' J N) : | |
smooth (J.prod I) I' (ฮป p : N ร M, S.bs p.1 p.2) := | |
(smooth_snd.comp $ basic_smooth_vector_bundle_core.smooth_proj _).comp S.smooth | |
/-- Reindex a family along a smooth function `f`. -/ | |
def reindex (S : family_one_jet_sec I M I' M' J' N') (f : C^โโฎJ, N; J', N'โฏ) : | |
family_one_jet_sec I M I' M' J N := | |
{ bs := ฮป t, S.bs (f t), | |
ฯ := ฮป t, S.ฯ (f t), | |
smooth' := ฮป x, (S.smooth' (f x.1, x.2)).comp x $ (f.smooth.smooth_at).prod_map' smooth_at_id } | |
def prod (S : family_one_jet_sec I M I' M' J N) : one_jet_sec (I.prod J) (M ร N) I' M' := | |
{ bs := ฮป p, S.bs p.2 p.1, | |
ฯ := ฮป p, mfderiv J I' (ฮป z, S.bs z p.1) p.2 โL mfderiv (I.prod J) J prod.snd p + | |
S.ฯ p.2 p.1 โL mfderiv (I.prod J) I prod.fst p, | |
smooth' := begin | |
refine smooth.one_jet_add _ _, | |
{ refine smooth.one_jet_comp J (ฮป p, p.2) _ smooth_snd.one_jet_ext, | |
-- have := S.smooth_bs.comp (smooth_id.prod_mk smooth_const), dsimp [function.comp] at this, | |
-- have := smooth.one_jet_ext this, | |
sorry | |
}, | |
{ refine smooth.one_jet_comp I (ฮป p, p.1) _ smooth_fst.one_jet_ext, | |
exact S.smooth.comp (smooth_snd.prod_mk smooth_fst) } | |
end } | |
/- -- attempted version with one one `mfderiv` left of addition | |
def prod (S : family_one_jet_sec I M I' M' J N) : one_jet_sec (I.prod J) (M ร N) I' M' := | |
{ bs := ฮป p, S.bs p.2 p.1, | |
ฯ := ฮป p, (mfderiv (I.prod J) I' (ฮป z : M ร N, S.bs z.2 p.1) p : _) + | |
S.ฯ p.2 p.1 โL mfderiv (I.prod J) I prod.fst p, | |
smooth' := begin | |
refine smooth.one_jet_add _ _, | |
{ refine smooth.one_jet_ext _, -- nope | |
}, | |
{ refine smooth.one_jet_comp I (ฮป p, p.1) _ smooth_fst.one_jet_ext, | |
exact S.smooth.comp (smooth_snd.prod_mk smooth_fst) } | |
end } | |
-/ | |
end family_one_jet_sec | |
/-- A homotopy of formal solutions is a family indexed by `โ` -/ | |
@[reducible] def htpy_one_jet_sec := family_one_jet_sec I M I' M' ๐(โ, โ) โ | |
example : has_coe_to_fun (htpy_one_jet_sec I M I' M') (ฮป S, โ โ one_jet_sec I M I' M') := | |
by apply_instance | |
end real | |