Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
I think it's all done!
fc5e983
raw
history blame
7.67 kB
/-
Copyright (c) 2022 Patrick Massot. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Floris van Doorn
-/
import local.relation
import global.one_jet_bundle
/-!
# Sections of 1-jet bundles
In this file we study sections of 1-jet bundles. This is the direct continuation
of `one_jet_bundle.lean` but it imports more files, hence the cut.
## Main definitions
In this file we consider two manifolds `M` and `M'` with models `I` and `I'`
* `one_jet_sec I M I' M'`: smooth sections of `one_jet_bundle I M I' M' โ†’ M`
-/
noncomputable theory
open set function filter charted_space smooth_manifold_with_corners
open_locale topological_space manifold
section general
variables {๐•œ : Type*} [nontrivially_normed_field ๐•œ]
-- declare a smooth manifold `M` over the pair `(E, H)`.
{E : Type*} [normed_add_comm_group E] [normed_space ๐•œ E]
{H : Type*} [topological_space H] (I : model_with_corners ๐•œ E H)
{M : Type*} [topological_space M] [charted_space H M] [smooth_manifold_with_corners I M]
-- declare a smooth manifold `M'` over the pair `(E', H')`.
{E' : Type*} [normed_add_comm_group E'] [normed_space ๐•œ E']
{H' : Type*} [topological_space H'] (I' : model_with_corners ๐•œ E' H')
{M' : Type*} [topological_space M'] [charted_space H' M'] [smooth_manifold_with_corners I' M']
variables (I I' M M')
/-- A section of a 1-jet bundle seen as a bundle over the source manifold. -/
structure one_jet_sec :=
(bs : M โ†’ M')
(ฯ• : โˆ€ x : M, tangent_space I x โ†’L[๐•œ] tangent_space I' (bs x))
(smooth' : smooth I ((I.prod I').prod ๐“˜(๐•œ, E โ†’L[๐•œ] E')) (ฮป x, one_jet_bundle.mk x (bs x) (ฯ• x)))
instance : has_coe_to_fun (one_jet_sec I M I' M') (ฮป S, M โ†’ one_jet_bundle I M I' M') :=
โŸจฮป S x, one_jet_bundle.mk x (S.bs x) (S.ฯ• x)โŸฉ
variables {I I' M M'}
namespace one_jet_sec
lemma coe_apply (F : one_jet_sec I M I' M') (x : M) : F x = โŸจ(x, F.bs x), (F.ฯ• x)โŸฉ := rfl
lemma fst_eq (F : one_jet_sec I M I' M') (x : M) : (F x).1 = (x, F.bs x) := rfl
lemma snd_eq (F : one_jet_sec I M I' M') (x : M) : (F x).2 = F.ฯ• x := rfl
lemma is_sec (F : one_jet_sec I M I' M') (x : M) : (F x).1.1 = x := rfl
lemma bs_eq (F : one_jet_sec I M I' M') (x : M) : F.bs x = (F x).1.2 := rfl
protected lemma smooth (F : one_jet_sec I M I' M') :
smooth I ((I.prod I').prod ๐“˜(๐•œ, E โ†’L[๐•œ] E')) F :=
F.smooth'
lemma smooth_eta (F : one_jet_sec I M I' M') : smooth I ((I.prod I').prod ๐“˜(๐•œ, E โ†’L[๐•œ] E'))
(ฮป x, one_jet_bundle.mk x (F.bs x) (F x).2 : M โ†’ one_jet_bundle I M I' M') :=
F.smooth
lemma smooth_bs (F : one_jet_sec I M I' M') : smooth I I' F.bs :=
(smooth_snd.comp $ basic_smooth_vector_bundle_core.smooth_proj _).comp F.smooth
/-- A section of Jยน(M, M') is holonomic at (x : M) if its linear map part is the derivative
of its base map at x. -/
def is_holonomic_at (F : one_jet_sec I M I' M') (x : M) : Prop :=
mfderiv I I' (F.bs) x = (F x).2
/-- A section of Jยน(M, M') is holonomic at (x : M) iff it coincides with the 1-jet extension of
its base map at x. -/
lemma is_holonomic_at_iff {F : one_jet_sec I M I' M'} {x : M} :
F.is_holonomic_at x โ†” one_jet_ext I I' F.bs x = F x :=
by simp_rw [is_holonomic_at, one_jet_ext, sigma.ext_iff, heq_iff_eq, F.fst_eq, eq_self_iff_true,
true_and]
/-- A map from M to Jยน(M, M') is holonomic if its linear map part is the derivative
of its base map at every point. -/
def is_holonomic (F : one_jet_sec I M I' M') : Prop :=
โˆ€ x, F.is_holonomic_at x
end one_jet_sec
/-- The one-jet extension of a function, seen as a section of the 1-jet bundle. -/
def one_jet_ext_sec (f : C^โˆžโŸฎI, M; I', M'โŸฏ) : one_jet_sec I M I' M' :=
โŸจf, mfderiv I I' f, f.smooth.one_jet_extโŸฉ
end general
section real
variables
{E : Type*} [normed_add_comm_group E] [normed_space โ„ E]
{H : Type*} [topological_space H] (I : model_with_corners โ„ E H)
(M : Type*) [topological_space M] [charted_space H M] [smooth_manifold_with_corners I M]
{E' : Type*} [normed_add_comm_group E'] [normed_space โ„ E']
{H' : Type*} [topological_space H'] (I' : model_with_corners โ„ E' H')
(M' : Type*) [topological_space M'] [charted_space H' M'] [smooth_manifold_with_corners I' M']
{F : Type*} [normed_add_comm_group F] [normed_space โ„ F]
{G : Type*} [topological_space G] (J : model_with_corners โ„ F G)
(N : Type*) [topological_space N] [charted_space G N] [smooth_manifold_with_corners J N]
{F' : Type*} [normed_add_comm_group F'] [normed_space โ„ F']
{G' : Type*} [topological_space G'] (J' : model_with_corners โ„ F' G')
(N' : Type*) [topological_space N'] [charted_space G' N'] [smooth_manifold_with_corners J' N']
/-- A family of jet sections indexed by manifold `N` is a function from `N` into jet sections
in such a way that the function is smooth as a function of all arguments. -/
structure family_one_jet_sec :=
(bs : N โ†’ M โ†’ M')
(ฯ• : โˆ€ (n : N) (m : M), tangent_space I m โ†’L[โ„] tangent_space I' (bs n m))
(smooth' : smooth (J.prod I) ((I.prod I').prod ๐“˜(โ„, E โ†’L[โ„] E'))
(ฮป p : N ร— M, one_jet_bundle.mk p.2 (bs p.1 p.2) (ฯ• p.1 p.2)))
instance : has_coe_to_fun (family_one_jet_sec I M I' M' J N) (ฮป S, N โ†’ one_jet_sec I M I' M') :=
โŸจฮป S t,
{ bs := S.bs t,
ฯ• := S.ฯ• t,
smooth' := ฮป x, (S.smooth' (t, x)).comp x $ smooth_at_const.prod_mk smooth_at_id }โŸฉ
namespace family_one_jet_sec
variables {I M I' M' J N J' N'}
protected lemma smooth (S : family_one_jet_sec I M I' M' J N) :
smooth (J.prod I) ((I.prod I').prod ๐“˜(โ„, E โ†’L[โ„] E')) (ฮป p : N ร— M, S p.1 p.2) := S.smooth'
lemma smooth_bs (S : family_one_jet_sec I M I' M' J N) :
smooth (J.prod I) I' (ฮป p : N ร— M, S.bs p.1 p.2) :=
(smooth_snd.comp $ basic_smooth_vector_bundle_core.smooth_proj _).comp S.smooth
/-- Reindex a family along a smooth function `f`. -/
def reindex (S : family_one_jet_sec I M I' M' J' N') (f : C^โˆžโŸฎJ, N; J', N'โŸฏ) :
family_one_jet_sec I M I' M' J N :=
{ bs := ฮป t, S.bs (f t),
ฯ• := ฮป t, S.ฯ• (f t),
smooth' := ฮป x, (S.smooth' (f x.1, x.2)).comp x $ (f.smooth.smooth_at).prod_map' smooth_at_id }
def prod (S : family_one_jet_sec I M I' M' J N) : one_jet_sec (I.prod J) (M ร— N) I' M' :=
{ bs := ฮป p, S.bs p.2 p.1,
ฯ• := ฮป p, mfderiv J I' (ฮป z, S.bs z p.1) p.2 โˆ˜L mfderiv (I.prod J) J prod.snd p +
S.ฯ• p.2 p.1 โˆ˜L mfderiv (I.prod J) I prod.fst p,
smooth' := begin
refine smooth.one_jet_add _ _,
{ refine smooth.one_jet_comp J (ฮป p, p.2) _ smooth_snd.one_jet_ext,
-- have := S.smooth_bs.comp (smooth_id.prod_mk smooth_const), dsimp [function.comp] at this,
-- have := smooth.one_jet_ext this,
sorry
},
{ refine smooth.one_jet_comp I (ฮป p, p.1) _ smooth_fst.one_jet_ext,
exact S.smooth.comp (smooth_snd.prod_mk smooth_fst) }
end }
/- -- attempted version with one one `mfderiv` left of addition
def prod (S : family_one_jet_sec I M I' M' J N) : one_jet_sec (I.prod J) (M ร— N) I' M' :=
{ bs := ฮป p, S.bs p.2 p.1,
ฯ• := ฮป p, (mfderiv (I.prod J) I' (ฮป z : M ร— N, S.bs z.2 p.1) p : _) +
S.ฯ• p.2 p.1 โˆ˜L mfderiv (I.prod J) I prod.fst p,
smooth' := begin
refine smooth.one_jet_add _ _,
{ refine smooth.one_jet_ext _, -- nope
},
{ refine smooth.one_jet_comp I (ฮป p, p.1) _ smooth_fst.one_jet_ext,
exact S.smooth.comp (smooth_snd.prod_mk smooth_fst) }
end }
-/
end family_one_jet_sec
/-- A homotopy of formal solutions is a family indexed by `โ„` -/
@[reducible] def htpy_one_jet_sec := family_one_jet_sec I M I' M' ๐“˜(โ„, โ„) โ„
example : has_coe_to_fun (htpy_one_jet_sec I M I' M') (ฮป S, โ„ โ†’ one_jet_sec I M I' M') :=
by apply_instance
end real