Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import global.relation | |
/-! | |
# Gromov's theorem | |
We prove the h-principle for open and ample first order differential relations. | |
-/ | |
noncomputable theory | |
open set | |
open_locale topological_space manifold | |
variables | |
{E : Type*} [normed_add_comm_group E] [normed_space β E] | |
{H : Type*} [topological_space H] {I : model_with_corners β E H} | |
{M : Type*} [topological_space M] [charted_space H M] [smooth_manifold_with_corners I M] | |
{E' : Type*} [normed_add_comm_group E'] [normed_space β E'] | |
{H' : Type*} [topological_space H'] {I' : model_with_corners β E' H'} | |
{M' : Type*} [topological_space M'] [charted_space H' M'] [smooth_manifold_with_corners I' M'] | |
{F : Type*} [normed_add_comm_group F] [normed_space β F] | |
{G : Type*} [topological_space G] (J : model_with_corners β F G) | |
(N : Type*) [topological_space N] [charted_space G N] [smooth_manifold_with_corners J N] | |
{F' : Type*} [normed_add_comm_group F'] [normed_space β F'] | |
{G' : Type*} [topological_space G'] (J' : model_with_corners β F' G') | |
(N' : Type*) [topological_space N'] [charted_space G' N'] [smooth_manifold_with_corners J' N'] | |
{R : rel_mfld I M I' M'} | |
/-- The non-parametric version of Gromov's theorem -/ | |
lemma rel_mfld.ample.satisfies_h_principle (h1 : R.ample) (h2 : is_open R) : | |
R.satisfies_h_principle := | |
sorry | |
/-- **Gromov's Theorem** -/ | |
theorem rel_mfld.ample.satisfies_h_principle_with (h1 : R.ample) (h2 : is_open R) : | |
R.satisfies_h_principle_with J N := | |
sorry | |