Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
32.9 kB
import for_mathlib.quotient_group
import valuation.localization
/-!
# The canonical valuation
The purpose of this file is to define a “canonical” valuation equivalent to
a given valuation. The whole raison d'etre for this is that there are set-theoretic
issues with the equivalence “relation” on valuations, because the target group Γ
can be arbitrary.
## Idea
The main idea is this. If v : R → Γ₀ is an arbitrary valuation,
then v extends to a valuation on K = Frac(R/supp(v)) and hence to a monoid
homomorphism K^* → units Γ₀, whose kernel is A^*, the units in the valuation ring
(or equivalently the things in K^* of norm at most 1). This embeds K^*/A^*
into Γ₀ and hence gives K^*/A^* the structure of a linearly ordered commutative group.
There is an induced map R → (K^*/A^*), and we call this the
_canonical valuation_ associated to v; this valuation is equivalent to v.
A technical advantage that this valuation has from the point of view
of Lean's type theory is that if R is in universe u₁ and Γ₀ in universe u₂,
then v : valuation R Γ₀ will be in universe `max u₁ u₂` but the canonical
valuation will just be in universe u₁. In particular, if v and v' are equivalent
then their associated canonical valuations are isomorphic and furthermore in the
same universe.
## Implementation details
All of the below names are in the `valuation` namespace.
The canonical valuation takes values in `value_monoid v`. Technically
this is not defined exactly in the way explained above.
So `value_monoid v` is not defined as `with_zero (K^* / A^*)`.
Instead, we take the equivalence relation on K^* given by A^*,
and extend it in the obvious way to K. The resulting quotient is naturally a monoid,
with an order and a zero element. Indeed, it is a linear_ordered_comm_group_with_zero.
Its unit group is canonically isomorphic to K^*/A^*. (Note that it is also
isomorphic to the subgroup of Γ₀ which Wedhorn calls the value group in [Wedhorn; 1.22]).
`value_monoid.to_Γ₀` is the monoid homomorphism to Γ₀.
`canonical_valuation v` is the canonical valuation.
`canonical_valuation.to_Γ₀ v` is the lemma that says that we can
recover v from `canonical_valuation v` using the monoid homomorphism
from (value_monoid v) to Γ₀.
-- TODO -- rewrite this when I've remembered what we proved.
We then prove some of Proposition-and-Definition 1.27 of Wedhorn,
where we note that we used (iii) for the definition, and
we're now using a different definition to Wedhorn for the value group
(because it's isomorphic so no mathematician will care, and
it's easier for us because it's in a smaller universe).
-/
local attribute [instance] classical.prop_decidable
local attribute [instance, priority 0] classical.DLO
noncomputable theory
universes u u₀ u₁ u₂ u₃
open linear_ordered_structure
variables {R : Type u₀} [comm_ring R]
/- TODO(jmc): Refactor this file to use valued_field,
instead of working explicitly with v.valuation_field. -/
namespace valuation
variables {Γ₀ : Type u} [linear_ordered_comm_group_with_zero Γ₀]
variables (v : valuation R Γ₀)
/-- The elements of `units (valuation_field v)` with norm 1. -/
definition valuation_field_norm_one :=
is_group_hom.ker (units.map (v.on_valuation_field : v.valuation_field →* Γ₀))
/-- `valuation_field_norm_one v is a normal subgroup of `units (valuation_field v)`. -/
instance (v : valuation R Γ₀) : normal_subgroup (valuation_field_norm_one v) :=
by unfold valuation_field_norm_one; apply_instance
namespace value_monoid
/-- The relation on a valuation field induced by the valuation:
a ≈ b if and only if there is a unit c of valuation 1 such that a * c = b.-/
def quotient_rel (a b : v.valuation_field) : Prop :=
∃ c : units v.valuation_field, c ∈ v.valuation_field_norm_one ∧ a * c = b
namespace quotient_rel
lemma refl (a : v.valuation_field) : quotient_rel v a a :=
1, is_submonoid.one_mem _, mul_one a⟩
lemma symm (a b : v.valuation_field) : quotient_rel v a b → quotient_rel v b a :=
by { rintro ⟨c, hc, rfl⟩, exact ⟨c⁻¹, is_subgroup.inv_mem hc, c.mul_inv_cancel_right a⟩ }
lemma trans (a b c : v.valuation_field) :
quotient_rel v a b → quotient_rel v b c → quotient_rel v a c :=
begin
rintro ⟨c, hc, rfl⟩ ⟨c', hc', rfl⟩,
exact ⟨c * c', is_submonoid.mul_mem hc hc', (mul_assoc _ _ _).symm⟩
end
end quotient_rel
/-- The setoid on a valuation field induced by the valuation:
a ≈ b if and only if there is a unit c of valuation 1 such that a * c = b.-/
def setoid : setoid (v.valuation_field) :=
{ r := quotient_rel v,
iseqv := ⟨quotient_rel.refl v, quotient_rel.symm v, quotient_rel.trans v⟩ }
end value_monoid
/-- The value group of the canonical valuation.-/
def value_monoid (v : valuation R Γ₀) : Type u₀ :=
@quotient v.valuation_field (value_monoid.setoid v)
namespace value_monoid
open function
/-- The natural map from the canonical value monoid to Γ₀, for a valuation with values in Γ₀. -/
def to_Γ₀ : v.value_monoid → Γ₀ :=
λ x, quotient.lift_on' x v.on_valuation_field $
begin
rintros a b ⟨c, hc, rfl⟩,
replace hc : v.on_valuation_field c = 1 := units.ext_iff.mp (is_subgroup.mem_trivial.mp hc),
rw [v.on_valuation_field.map_mul, hc, mul_one],
end
lemma to_Γ₀_inj : injective (to_Γ₀ v) :=
begin
rintros ⟨a⟩ ⟨b⟩ h,
change v.on_valuation_field a = v.on_valuation_field b at h,
by_cases ha : a = 0,
{ subst a, rw [valuation.map_zero, eq_comm, valuation.zero_iff] at h, rw h },
{ have hb : b ≠ 0,
{ rintro rfl, rw [valuation.map_zero, valuation.zero_iff] at h, exact ha h },
refine quotient.sound' ⟨(units.mk0 a ha)⁻¹ * (units.mk0 b hb),
is_subgroup.mem_trivial.mpr _, (units.mk0 a ha).mul_inv_cancel_left _⟩,
rw ← v.on_valuation_field.ne_zero_iff at hb,
simp [units.ext_iff, h, hb] }
end
/--The linear order on the canonical value monoid associated with a valuation.-/
instance : linear_order (v.value_monoid) :=
linear_order.lift (to_Γ₀ v) (to_Γ₀_inj v) infer_instance
lemma to_Γ₀_strict_mono : strict_mono (to_Γ₀ v) := λ a b, id
@[simp] lemma triangle (a : v.valuation_field) :
to_Γ₀ v (quotient.mk' a) = v.on_valuation_field a := rfl
/--The zero element of the canonical value monoid associated with a valuation.-/
instance : has_zero (v.value_monoid) := ⟨quotient.mk' 0
/--The unit element of the canonical value monoid associated with a valuation.-/
instance : has_one (v.value_monoid) := ⟨quotient.mk' 1
/--The inversion function of the canonical value monoid associated with a valuation.-/
instance : has_inv (v.value_monoid) :=
⟨λ x, quotient.lift_on' x (λ a, quotient.mk' a⁻¹)
begin
rintros a b ⟨c, hc, rfl⟩,
replace hc : v.on_valuation_field c = 1 := units.ext_iff.mp (is_subgroup.mem_trivial.mp hc),
apply to_Γ₀_inj,
simp [hc],
end
/--The multiplication on the canonical value monoid associated with a valuation.-/
instance : has_mul (v.value_monoid) :=
⟨λ x y, quotient.lift_on₂' x y (λ a b, quotient.mk' (a*b))
begin
rintros a₁ b₁ a₂ b₂ ⟨c₁, hc₁, rfl⟩ ⟨c₂, hc₂, rfl⟩,
replace hc₁ : v.on_valuation_field c₁ = 1 := units.ext_iff.mp (is_subgroup.mem_trivial.mp hc₁),
replace hc₂ : v.on_valuation_field c₂ = 1 := units.ext_iff.mp (is_subgroup.mem_trivial.mp hc₂),
apply to_Γ₀_inj,
simp [hc₁, hc₂],
end
@[simp] lemma to_Γ₀_zero : to_Γ₀ v 0 = 0 := v.on_valuation_field.map_zero
@[simp] lemma to_Γ₀_one : to_Γ₀ v 1 = 1 := v.on_valuation_field.map_one
@[simp] lemma to_Γ₀_inv (a) : to_Γ₀ v a⁻¹ = (to_Γ₀ v a)⁻¹ :=
quotient.induction_on' a $ λ x, v.on_valuation_field.map_inv
@[simp] lemma to_Γ₀_mul (a b) : to_Γ₀ v (a*b) = (to_Γ₀ v a) * (to_Γ₀ v b) :=
quotient.induction_on₂' a b $ λ x y, v.on_valuation_field.map_mul x y
/--The canonical value monoid associated with a valuation is a group with zero.-/
instance : group_with_zero (v.value_monoid) :=
begin
refine_struct {
.. value_monoid.has_zero v,
.. value_monoid.has_one v,
.. value_monoid.has_inv v,
.. value_monoid.has_mul v, },
show decidable_eq (value_monoid v),
{ apply_instance },
show (0 : v.value_monoid) ≠ 1,
{ assume this, replace := congr_arg (to_Γ₀ v) this, simpa using this, },
all_goals { intros, apply to_Γ₀_inj, simp },
{ exact mul_assoc _ _ _ },
{ apply mul_inv_cancel', intro this, apply_assumption, apply to_Γ₀_inj, simpa }
end
/--The canonical value monoid associated with a valuation
is a linearly ordered commutative group with zero.-/
instance : linear_ordered_comm_group_with_zero (v.value_monoid) :=
{ mul_comm := λ a b, to_Γ₀_inj v $ by simpa using mul_comm _ _,
mul_le_mul_left := λ a b h c,
begin
rw ← (to_Γ₀_strict_mono v).le_iff_le at h ⊢,
simpa using linear_ordered_structure.mul_le_mul_left h _
end,
zero_le' := λ a, by { rw ← (to_Γ₀_strict_mono v).le_iff_le, simp },
.. value_monoid.group_with_zero v,
.. value_monoid.linear_order v }
/-- The natural quotient map from `units (valuation_field v)` to `value_monoid v`. -/
def mk (v : valuation R Γ₀) :
valuation_field v →* value_monoid v :=
{ to_fun := quotient.mk',
map_one' := rfl,
map_mul' := λ a b, rfl, }
end value_monoid
/-- The canonical valuation on Frac(R/supp(v)), taking values in `value_monoid v`. -/
def valuation_field.canonical_valuation :
valuation (valuation_field v) (value_monoid v) :=
{ map_zero' := rfl,
map_add' := λ a b,
begin
rw ← (value_monoid.to_Γ₀_strict_mono v).le_iff_le,
rw (value_monoid.to_Γ₀_strict_mono v).monotone.map_max,
exact v.on_valuation_field.map_add a b
end,
.. value_monoid.mk v }
-- ⟨valuation_field.canonical_valuation_v v, valuation_field.canonical_valuation_v.is_valuation v⟩
/-- The canonical valuation on R/supp(v), taking values in `value_monoid v`. -/
definition quotient.canonical_valuation :
valuation (ideal.quotient (supp v)) (value_monoid v) :=
@comap _ _ _ _ _ _ (localization.of)
(by apply_instance) (valuation_field.canonical_valuation v)
/-- The canonical valuation on R, taking values in `value_monoid v`. -/
definition canonical_valuation :
valuation R (value_monoid v) :=
(quotient.canonical_valuation v).comap (ideal.quotient.mk (supp v))
/-- The relation between `v.canonical_valuation r` and `v r`. -/
lemma canonical_valuation_eq (r : R) :
v.canonical_valuation r = value_monoid.mk v (v.valuation_field_mk r) := rfl
namespace canonical_valuation
-- This looks handy to know but we never actually use it.
/-- Every element of `value_monoid v` is a ratio of things in the image of `canonical_valuation v`.-/
lemma value_monoid.is_ratio (v : valuation R Γ₀) (g : value_monoid v) :
∃ r s : R, s ∉ v.supp ∧ v.canonical_valuation s * g = v.canonical_valuation r :=
begin
apply quotient.induction_on' g, clear g,
rintros ⟨⟨r⟩, ⟨s⟩, h⟩,
change ideal.quotient.mk _ s ∈ _ at h,
use [r, s],
split,
{ show s ∉ supp v,
assume mem_supp,
erw [localization.fraction_ring.mem_non_zero_divisors_iff_ne_zero,
(ideal.quotient.eq_zero_iff_mem).2 mem_supp] at h,
contradiction },
show value_monoid.mk v _ * value_monoid.mk v _ = value_monoid.mk v _,
rw ← monoid_hom.map_mul,
refine congr_arg _ _,
let rq := ideal.quotient.mk (supp v) r,
let sq := ideal.quotient.mk (supp v) s,
show (localization.of sq : valuation_field v) * (localization.mk rq ⟨sq, h⟩) = localization.of rq,
erw [localization.mk_eq, mul_comm, mul_assoc, units.inv_val _, mul_one],
refl
end
/-- v can be reconstructed from `canonical_valuation v` by pushing forward along
the map `value_monoid v → Γ₀`. -/
lemma to_Γ₀ :
(canonical_valuation v).map (monoid_hom.mk (value_monoid.to_Γ₀ v) (value_monoid.to_Γ₀_one v) (value_monoid.to_Γ₀_mul v))
(value_monoid.to_Γ₀_zero v) (value_monoid.to_Γ₀_strict_mono v).monotone = v :=
ext $ λ r, show v r * (v 1)⁻¹ = v r, by simp
end canonical_valuation -- end of namespace
end valuation -- end of namespace
namespace valuation
variables {Γ₀ : Type u} [linear_ordered_comm_group_with_zero Γ₀]
variables {Γ'₀ : Type u₁} [linear_ordered_comm_group_with_zero Γ'₀]
variables {Γ''₀ : Type u₂} [linear_ordered_comm_group_with_zero Γ''₀]
variables {Γ₀₃ : Type u₃} [linear_ordered_comm_group_with_zero Γ₀₃]
/-- A valuation is equivalent to its canonical valuation -/
lemma canonical_valuation_is_equiv (v : valuation R Γ₀) :
v.canonical_valuation.is_equiv v :=
begin
have h := is_equiv.of_eq (canonical_valuation.to_Γ₀ v),
symmetry,
refine h.symm.trans _,
exact is_equiv_of_map_strict_mono _ _ _,
end
namespace is_equiv
-- Various lemmas about valuations being equivalent.
variables {v : valuation R Γ₀} {v₁ : valuation R Γ'₀} {v₂ : valuation R Γ''₀} {v₃ : valuation R Γ₀₃}
/-- If J ⊆ supp(v) then pulling back the induced valuation on R / J back to R gives a
valuation equivalent to v. -/
lemma on_quot_comap_self {J : ideal R} (hJ : J ≤ supp v) :
is_equiv ((v.on_quot hJ).comap (ideal.quotient.mk J)) v :=
of_eq (on_quot_comap_eq _ _)
/-- Two valuations on R/J are equivalent iff their pullbacks to R are equivalent. -/
lemma comap_on_quot (J : ideal R) (v₁ : valuation J.quotient Γ'₀) (v₂ : valuation J.quotient Γ''₀) :
(v₁.comap (ideal.quotient.mk J)).is_equiv (v₂.comap (ideal.quotient.mk J)) ↔ v₁.is_equiv v₂ :=
{ mp := begin rintros h ⟨x⟩ ⟨y⟩, exact h x y end,
mpr := λ h, comap _ h }
open localization
/-- If supp(v)=0 then v is equivalent to the pullback of the extension of v to Frac(R). -/
lemma on_frac_comap_self {R : Type u₀} [integral_domain R] (v : valuation R Γ₀) (hv : supp v = 0) :
is_equiv ((v.on_frac hv).comap of) v :=
of_eq (on_frac_comap_eq v hv)
/-- If R is an ID then two valuations on R are equivalent iff their extensions to Frac(R) are
equivalent. -/
lemma comap_on_frac {R : Type u₀} [integral_domain R]
(v₁ : valuation (fraction_ring R) Γ'₀) (v₂ : valuation (fraction_ring R) Γ''₀) :
(v₁.comap of).is_equiv (v₂.comap of) ↔ is_equiv v₁ v₂ :=
{ mp := begin
rintros h ⟨x⟩ ⟨y⟩,
erw [← comap_on_frac_eq v₁, ← comap_on_frac_eq v₂],
show _ * _ ≤ _ * _ ↔ _ * _ ≤ _ * _,
erw div_le_div', erw div_le_div',
{ repeat {erw ← valuation.map_mul},
exact h _ _ },
all_goals { intro H,
erw [← mem_supp_iff, comap_supp, (supp _).eq_bot_of_prime] at H,
simp at H,
replace H := fraction_ring.eq_zero_of _ H,
refine fraction_ring.mem_non_zero_divisors_iff_ne_zero.mp _ H,
apply subtype.val_prop _,
apply_instance },
end,
mpr := λ h, h.comap _ }
/-- [Wed 1.27] (iii) -> first part of (ii). -/
lemma supp_eq (h : v₁.is_equiv v₂) : supp v₁ = supp v₂ :=
ideal.ext $ λ r,
calc r ∈ supp v₁ ↔ v₁ r = 0 : iff.rfl
... ↔ v₁ r ≤ v₁ 0 : by simp
... ↔ v₂ r ≤ v₂ 0 : h r 0
... ↔ v₂ r = 0 : by simp
... ↔ r ∈ supp v₂ : iff.rfl
/-- If v₁ and v₂ are equivalent then v₁(r)=1 → v₂(r)=1. -/
lemma v_eq_one_of_v_eq_one (h : v₁.is_equiv v₂) {r : R} : v₁ r = 1 → v₂ r = 1 :=
begin
rw [←v₁.map_one, ←v₂.map_one],
intro hr,
exact le_antisymm ((h r 1).1 (le_of_eq hr)) ((h 1 r).1 (le_of_eq hr.symm)),
end
/-- If v₁ and v₂ are equivalent then v₁(r)=1 ↔ v₂(r)=1. -/
lemma v_eq_one (h : v₁.is_equiv v₂) (r : R) : v₁ r = 1 ↔ v₂ r = 1 :=
⟨v_eq_one_of_v_eq_one h,v_eq_one_of_v_eq_one h.symm⟩
/-- If v₁ and v₂ are equivalent then their canonical valuations are too. -/
lemma canonical_equiv_of_is_equiv (h : v₁.is_equiv v₂) :
(canonical_valuation v₁).is_equiv (canonical_valuation v₂) :=
begin
refine is_equiv.trans v₁.canonical_valuation_is_equiv _,
refine is_equiv.trans h _,
apply is_equiv.symm,
exact v₂.canonical_valuation_is_equiv
end
end is_equiv -- end of namespace
/-- The supports of v and v.canonical_valuation are equal. -/
lemma canonical_valuation_supp (v : valuation R Γ₀) :
supp (v.canonical_valuation) = supp v := (canonical_valuation_is_equiv v).supp_eq
/-- The canonical valuation of a valuation on a field is surjective. -/
lemma canonical_valuation.surjective {K : Type*} [discrete_field K] (v : valuation K Γ₀) :
function.surjective (v.canonical_valuation) :=
begin
rintro ⟨⟨⟨r⟩,⟨⟨s⟩,h⟩⟩⟩,
refine ⟨s⁻¹ * r, _⟩,
apply quotient.sound,
refine ⟨1, is_submonoid.one_mem _, _⟩,
rw [units.coe_one, mul_one],
apply quotient.sound,
refine ⟨_, h, _⟩,
dsimp only [-sub_eq_add_neg],
convert zero_mul _, rw [sub_eq_zero],
dsimp, rw ← mul_assoc,
congr, symmetry,
show ideal.quotient.mk (supp v) _ * ideal.quotient.mk (supp v) _ = 1,
rw ← is_ring_hom.map_mul (ideal.quotient.mk (supp v)),
convert is_ring_hom.map_one (ideal.quotient.mk (supp v)),
apply mul_inv_cancel,
contrapose! h, subst s,
refine (not_iff_not_of_iff localization.fraction_ring.mem_non_zero_divisors_iff_ne_zero).mpr _,
exact not_not.mpr rfl
end
section Wedhorn1_27_equivalences
variables {v : valuation R Γ₀} {v₁ : valuation R Γ'₀} {v₂ : valuation R Γ''₀} {v₃ : valuation R Γ₀₃}
open is_group_hom quotient_group function
-- We now start on the equivalences of Wedhorn 1.27. The first one is easy.
/-- Wedhorn 1.27 (i) → (iii) : An ordered isomorphism of value groups which commutes with
canonical valuations implies that valuations are equivalent. -/
lemma of_inj_value_monoid (f : v₁.value_monoid →* v₂.value_monoid) (h₀ : f 0 = 0) (hf : strict_mono f)
(H : v₂.canonical_valuation = v₁.canonical_valuation.map f h₀ (hf.monotone)) :
v₁.is_equiv v₂ :=
begin
refine (v₁.canonical_valuation_is_equiv.symm).trans _,
refine (is_equiv.trans _ (v₂.canonical_valuation_is_equiv)),
rw H,
symmetry,
exact is_equiv_of_map_strict_mono _ _ _
end
-- These lemmas look slightly ridiculous to a mathematician but they are avoiding equality of
-- types and instead defining and reasoning about maps which mathematicians would call
-- "the identiy map".
/-- Natural map R/supp(v₁) → R/supp(v₂) induced by equality supp(v₁)=supp(v₂). -/
def quot_of_quot_of_eq_supp (h : supp v₁ = supp v₂) : valuation_ID v₁ → valuation_ID v₂ :=
ideal.quotient.lift _ (ideal.quotient.mk _)
(λ r hr, ideal.quotient.eq_zero_iff_mem.2 $ h ▸ hr)
lemma quot_of_quot_of_eq_supp.id (r : valuation_ID v) : quot_of_quot_of_eq_supp (rfl) r = r :=
by rcases r;refl
lemma quot_of_quot_of_eq_supp.comp (h12 : supp v₁ = supp v₂) (h23 : supp v₂ = supp v₃)
(r : valuation_ID v₁) : quot_of_quot_of_eq_supp h23 (quot_of_quot_of_eq_supp h12 r) =
quot_of_quot_of_eq_supp (h23 ▸ h12 : supp v₁ = supp v₃) r :=
by rcases r;refl
/-- If supp(v₁)=supp(v₂) then R/supp(v₁) is isomorphic to R/supp(v₂). -/
def valuation_ID.equiv (h : supp v₁ = supp v₂) : valuation_ID v₁ ≃ valuation_ID v₂ :=
{ to_fun := quot_of_quot_of_eq_supp h,
inv_fun := quot_of_quot_of_eq_supp (h.symm),
left_inv := λ r, by rw quot_of_quot_of_eq_supp.comp h h.symm; exact quot_of_quot_of_eq_supp.id r,
right_inv := λ r, by rw quot_of_quot_of_eq_supp.comp h.symm h; exact quot_of_quot_of_eq_supp.id r
}
@[simp] lemma quot_of_quot_of_eq_supp_quotient_mk (h : supp v₁ = supp v₂) :
quot_of_quot_of_eq_supp h ∘ ideal.quotient.mk _ = ideal.quotient.mk _ :=
funext $ λ x, ideal.quotient.lift_mk
lemma quot_of_quot_of_eq_supp_quotient_mk' (h : supp v₁ = supp v₂) (r : R) :
quot_of_quot_of_eq_supp h (ideal.quotient.mk _ r) = ideal.quotient.mk _ r :=
by rw ←quot_of_quot_of_eq_supp_quotient_mk h
/-- If supp(v₁)=supp(v₂) then the identity map R/supp(v₁) → R/supp(v₂) is a ring homomorphism. -/
instance quot_of_quot_of_eq_supp.is_ring_hom (h : supp v₁ = supp v₂) :
is_ring_hom (quot_of_quot_of_eq_supp h) :=
by delta quot_of_quot_of_eq_supp; apply_instance
/-- If supp(v₁)=supp(v₂) then R/supp(v₁) and R/supp(v₂) are isomorphic rings. -/
def quot_equiv_quot_of_eq_supp (h : supp v₁ = supp v₂) : valuation_ID v₁ ≃+* valuation_ID v₂ :=
{ .. ring_hom.of (quot_of_quot_of_eq_supp h),
.. valuation_ID.equiv h }
/-- If supp(v₁)=supp(v₂) then the triangle R → R/supp(v₁) → R/supp(v₂) commutes. -/
lemma quot_equiv_quot_mk_eq_mk (h : supp v₁ = supp v₂) (r : R) :
(quot_equiv_quot_of_eq_supp h).to_equiv (ideal.quotient.mk _ r) = ideal.quotient.mk _ r :=
quot_of_quot_of_eq_supp_quotient_mk' h r
lemma quot_of_quot_of_eq_supp_inj (h : supp v₁ = supp v₂) : injective (quot_of_quot_of_eq_supp h) :=
injective_of_left_inverse (quot_equiv_quot_of_eq_supp h).left_inv
lemma valuation_ID_le_of_le_of_equiv (h : v₁.is_equiv v₂) (a b : valuation_ID v₁) :
(a ≤ b) ↔
quot_of_quot_of_eq_supp (is_equiv.supp_eq h) a ≤ quot_of_quot_of_eq_supp (is_equiv.supp_eq h) b :=
by rcases a; rcases b; exact (h a b)
/-- If v₁ and v₂ are equivalent, then the associated preorders on
R/supp(v₁)=R/supp(v₂) are equivalent. -/
def valuation_ID.preorder_equiv (h : v₁.is_equiv v₂) :
preorder_equiv (valuation_ID v₁) (valuation_ID v₂) :=
{ le_map := valuation_ID_le_of_le_of_equiv h,
..valuation_ID.equiv h.supp_eq
}
section valuation_field
open localization
/-- The natural map Frac(R/supp(v₁)) → Frac(R/supp(v₂)) if supp(v₁) = supp(v₂). -/
def valfield_of_valfield_of_eq_supp (h : supp v₁ = supp v₂) :
valuation_field v₁ → valuation_field v₂ :=
fraction_ring.map (quot_of_quot_of_eq_supp h) (quot_of_quot_of_eq_supp_inj h)
/-- The triangle R → Frac(R/supp(v₁)) → Frac(R/supp(v₂)) commutes if supp(v₁)=supp(v₂). -/
lemma valfield_of_valfield_of_eq_supp_quotient_mk (h : supp v₁ = supp v₂) (r : R) :
valfield_of_valfield_of_eq_supp h (of $ ideal.quotient.mk _ r) = of (ideal.quotient.mk _ r) :=
begin
unfold valfield_of_valfield_of_eq_supp,
rw fraction_ring.map_of,
rw quot_of_quot_of_eq_supp_quotient_mk',
end
/-- If supp(v₁)=supp(v₂) then the natural map Frac(R/supp(v₁)) → Frac(R/supp(v₂)) is a
homomorphism of fields. -/
instance is_ring_hom_of_supp (h : supp v₁ = supp v₂) : is_ring_hom (valfield_of_valfield_of_eq_supp h) :=
by delta valfield_of_valfield_of_eq_supp; apply_instance
-- This should be possible using type class inference but there are max class
-- instance issues.
/-- If supp(v₁)=supp(v₂) then the natural map Frac(R/supp(v₁)) → Frac(R/supp(v₂)) is a
homomorphism of monoids. -/
instance (h : supp v₁ = supp v₂) : is_monoid_hom (valfield_of_valfield_of_eq_supp h) :=
is_semiring_hom.is_monoid_hom (valfield_of_valfield_of_eq_supp h)
/-- If supp(v₁)=supp(v₂) then the natural map Frac(R/supp(v₁)) → Frac(R/supp(v₂)) is an
isomorphism of rings. -/
def valfield_equiv_valfield_of_eq_supp (h : supp v₁ = supp v₂) :
valuation_field v₁ ≃+* valuation_field v₂ :=
fraction_ring.equiv_of_equiv (quot_equiv_quot_of_eq_supp h)
lemma valfield_equiv_eq_valfield_of_valfield (h : supp v₁ = supp v₂) (q : valuation_field v₁) :
(valfield_equiv_valfield_of_eq_supp h).to_equiv q = valfield_of_valfield_of_eq_supp h q := rfl
lemma valfield_equiv_valfield_mk_eq_mk (h : supp v₁ = supp v₂) (r : R) :
(valfield_equiv_valfield_of_eq_supp h).to_equiv (of $ ideal.quotient.mk _ r)
= of (ideal.quotient.mk _ r) :=
valfield_of_valfield_of_eq_supp_quotient_mk h r
/-- If v₁ and v₂ are equivalent then the induced valuations on R/supp(v₁) and R/supp(v₂)
(pulled back to R/supp(v₁) are equivalent. -/
lemma is_equiv.comap_quot_of_quot (h : v₁.is_equiv v₂) :
(v₁.on_quot (set.subset.refl _)).is_equiv
((v₂.on_quot (set.subset.refl _)).comap (quot_of_quot_of_eq_supp h.supp_eq)) :=
begin
rw [← is_equiv.comap_on_quot, ← comap_comp],
simp [h],
end
/-- If v₁ and v₂ are equivalent then the induced valuations on Frac(R/supp(v₁)) and
Frac(R/supp(v₂)) [pulled back] are equivalent. -/
lemma is_equiv.on_valuation_field_is_equiv (h : v₁.is_equiv v₂) :
v₁.on_valuation_field.is_equiv
(v₂.on_valuation_field.comap (valfield_of_valfield_of_eq_supp h.supp_eq)) :=
begin
delta valfield_of_valfield_of_eq_supp, delta on_valuation_field,
erw [← is_equiv.comap_on_frac, ← comap_comp, on_frac_comap_eq],
simp [comap_comp, h.comap_quot_of_quot],
end
/-- The valuation rings of two equivalent valuations are isomorphic (as types). -/
def val_ring_equiv_of_is_equiv_aux (h : v₁.is_equiv v₂) :
v₁.valuation_ring ≃ v₂.valuation_ring :=
equiv.subtype_congr (valfield_equiv_valfield_of_eq_supp h.supp_eq).to_equiv $
begin
intro x,
show _ ≤ _ ↔ _ ≤ _,
erw [← v₁.on_valuation_field.map_one, h.on_valuation_field_is_equiv],
convert iff.refl _,
symmetry,
exact valuation.map_one _,
end
/-- The valuation rings of two equivalent valuations are isomorphic as rings. -/
def val_ring_equiv_of_is_equiv (h : v₁.is_equiv v₂) : v₁.valuation_ring ≃+* v₂.valuation_ring :=
{ map_add' := λ x y, subtype.val_injective $
(valfield_equiv_valfield_of_eq_supp h.supp_eq).map_add x y,
map_mul' := λ x y, subtype.val_injective $
(valfield_equiv_valfield_of_eq_supp h.supp_eq).map_mul x y,
.. val_ring_equiv_of_is_equiv_aux h, }
-- we omit the proof that the diagram {r | v₁ r ≤ 1} → v₁.valuation_ring → v₂.valuation_ring
-- commutes.
lemma valfield_le_of_le_of_equiv (h : v₁.is_equiv v₂) (a b : valuation_field v₁) :
(a ≤ b) ↔ valfield_of_valfield_of_eq_supp (h.supp_eq) a ≤
valfield_of_valfield_of_eq_supp (h.supp_eq) b :=
calc a ≤ b ↔ v₁.on_valuation_field a ≤ v₁.on_valuation_field b : iff.rfl
... ↔ _ : h.on_valuation_field_is_equiv a b
def valfield.preorder_equiv (h : v₁.is_equiv v₂) :
preorder_equiv (valuation_field v₁) (valuation_field v₂) :=
{ le_map := valfield_le_of_le_of_equiv h,
..(valfield_equiv_valfield_of_eq_supp h.supp_eq).to_equiv
}
-- units
/-- The induced map between the unit groups of the valuation fields of
two valuations with the same support.-/
def valfield_units_of_valfield_units_of_eq_supp (h : supp v₁ = supp v₂) :
units (valuation_field v₁) → units (valuation_field v₂) :=
units.map' $ valfield_of_valfield_of_eq_supp h
/-- The induced map between the unit groups of the valuation fields of
two valuations with the same support is a group homomorphism.-/
instance valfield_units.is_group_hom (h : supp v₁ = supp v₂) :
is_group_hom (valfield_units_of_valfield_units_of_eq_supp h) :=
by unfold valfield_units_of_valfield_units_of_eq_supp; apply_instance
lemma units_valfield_of_units_valfield_of_eq_supp_mk
(h : supp v₁ = supp v₂) (r : R) (hr : r ∉ supp v₁) :
valfield_units_of_valfield_units_of_eq_supp h (units_valfield_mk v₁ r hr)
= units_valfield_mk v₂ r (h ▸ hr) := units.ext $ valfield_equiv_valfield_mk_eq_mk h r
def valfield_units_equiv_units_of_eq_supp (h : supp v₁ = supp v₂) :
(units (valuation_field v₁)) ≃* (units (valuation_field v₂)) :=
units.map_equiv { .. valfield_equiv_valfield_of_eq_supp h }
end valuation_field -- section
lemma valfield_units_equiv_units_mk_eq_mk (h : supp v₁ = supp v₂) (r : R) (hr : r ∉ supp v₁):
(valfield_units_equiv_units_of_eq_supp h).to_equiv (units_valfield_mk v₁ r hr) =
units_valfield_mk v₂ r (h ▸ hr) := units_valfield_of_units_valfield_of_eq_supp_mk h r hr
def valfield_units_preorder_equiv (h : v₁.is_equiv v₂) :
preorder_equiv (units (valuation_field v₁)) (units (valuation_field v₂)) :=
{ le_map := λ u v, @le_equiv.le_map _ _ _ _ (valfield.preorder_equiv h) u.val v.val,
..valfield_units_equiv_units_of_eq_supp (h.supp_eq) }
lemma val_one_iff_unit_val_one (x : units (valuation_field v)) :
x ∈ valuation_field_norm_one v ↔ v.on_valuation_field x = 1 :=
calc x ∈ valuation_field_norm_one v ↔
(units.map (v.on_valuation_field : v.valuation_field →* Γ₀) x = 1) : is_subgroup.mem_trivial
... ↔ v.on_valuation_field x = 1 : units.ext_iff
lemma is_equiv.norm_one_eq_norm_one (h : is_equiv v₁ v₂) :
valfield_units_of_valfield_units_of_eq_supp (is_equiv.supp_eq h) ⁻¹' valuation_field_norm_one v₂
= valuation_field_norm_one v₁ :=
begin
ext x,
rw [set.mem_preimage, val_one_iff_unit_val_one x,
is_equiv.v_eq_one (is_equiv.on_valuation_field_is_equiv h) x, val_one_iff_unit_val_one],
refl,
end
/-- Two equivalent valuations have isomorphic canonical value monoids.
This is part of the statement of [Wedhorn, 1.27 (iii) -> (i)]. -/
def is_equiv.value_mul_equiv (h : is_equiv v₁ v₂) :
(value_monoid v₁) ≃* (value_monoid v₂) :=
{ to_fun := λ x, quotient.lift_on' x ((valuation_field.canonical_valuation v₂).comap (valfield_of_valfield_of_eq_supp h.supp_eq))
begin
rintros a b ⟨c, hc, rfl⟩,
rw valuation.map_mul,
convert (mul_one _).symm,
rw val_one_iff_unit_val_one at hc,
rw h.on_valuation_field_is_equiv.v_eq_one c at hc,
suffices : v₂.on_valuation_field.is_equiv (valuation_field.canonical_valuation v₂),
{ have tmp := (this.comap (valfield_of_valfield_of_eq_supp _)),
rwa tmp.v_eq_one at hc, },
intros a b, exact iff.rfl
end,
inv_fun := λ x, quotient.lift_on' x ((valuation_field.canonical_valuation v₁).comap (valfield_of_valfield_of_eq_supp h.symm.supp_eq))
begin
rintros a b ⟨c, hc, rfl⟩,
rw valuation.map_mul,
convert (mul_one _).symm,
rw val_one_iff_unit_val_one at hc,
rw h.symm.on_valuation_field_is_equiv.v_eq_one c at hc,
suffices : v₁.on_valuation_field.is_equiv (valuation_field.canonical_valuation v₁),
{ have tmp := (this.comap (valfield_of_valfield_of_eq_supp _)),
rwa tmp.v_eq_one at hc, },
intros a b, exact iff.rfl
end,
left_inv := by { rintro ⟨a⟩, apply quotient.sound',
refine ⟨1, is_submonoid.one_mem _, _⟩,
rw [units.coe_one, mul_one],
exact (valfield_equiv_valfield_of_eq_supp h.supp_eq).to_equiv.left_inv a },
right_inv := by { rintro ⟨a⟩, apply quotient.sound',
refine ⟨1, is_submonoid.one_mem _, _⟩,
rw [units.coe_one, mul_one],
exact (valfield_equiv_valfield_of_eq_supp h.symm.supp_eq).to_equiv.left_inv a },
map_mul' :=
begin
rintro ⟨a⟩ ⟨b⟩, apply quotient.sound',
refine ⟨1, is_submonoid.one_mem _, _⟩,
rw [units.coe_one, mul_one],
exact is_ring_hom.map_mul _,
end }
-- ordering part of 1.27 (iii) -> (i)
lemma is_equiv.value_monoid_order_equiv_aux (h : is_equiv v₁ v₂) (x y : value_monoid v₁) (h2 : x ≤ y) :
h.value_mul_equiv x ≤ h.value_mul_equiv y :=
begin
induction x with x, induction y, swap, refl, swap, refl,
exact (is_equiv.on_valuation_field_is_equiv h x y).1 h2,
end
/-- The canonical value monoids of two equivalent valuations are order equivalent.-/
def is_equiv.value_monoid_le_equiv (h : is_equiv v₁ v₂) :
(value_monoid v₁) ≃≤ (value_monoid v₂) :=
{ le_map := λ x y, linear_order_le_iff_of_monotone_injective
(h.value_mul_equiv.to_equiv.bijective.1)
(is_equiv.value_monoid_order_equiv_aux h) x y
..h.value_mul_equiv}
lemma is_equiv.value_mul_equiv_monotone (h : is_equiv v₁ v₂) :
monotone (h.value_mul_equiv) := λ x y,
(@@le_equiv.le_map _ _ (is_equiv.value_monoid_le_equiv h)).1
lemma is_equiv.value_mul_equiv_map_zero (h : is_equiv v₁ v₂) :
h.value_mul_equiv 0 = 0 :=
begin
apply quotient.sound',
refine ⟨1, is_submonoid.one_mem _, _⟩,
rw [units.coe_one, mul_one],
exact is_ring_hom.map_zero _,
end
lemma is_equiv.with_zero_value_mul_equiv_mk_eq_mk (h : v₁.is_equiv v₂) :
(canonical_valuation v₁).map
h.value_mul_equiv.to_monoid_hom h.value_mul_equiv_map_zero h.value_mul_equiv_monotone =
canonical_valuation v₂ :=
begin
ext r, apply quotient.sound',
refine ⟨1, is_submonoid.one_mem _, _⟩,
rw [units.coe_one, mul_one],
apply valfield_of_valfield_of_eq_supp_quotient_mk,
end
end Wedhorn1_27_equivalences -- section
end valuation