Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import for_mathlib.quotient_group | |
import valuation.localization | |
/-! | |
# The canonical valuation | |
The purpose of this file is to define a “canonical” valuation equivalent to | |
a given valuation. The whole raison d'etre for this is that there are set-theoretic | |
issues with the equivalence “relation” on valuations, because the target group Γ | |
can be arbitrary. | |
## Idea | |
The main idea is this. If v : R → Γ₀ is an arbitrary valuation, | |
then v extends to a valuation on K = Frac(R/supp(v)) and hence to a monoid | |
homomorphism K^* → units Γ₀, whose kernel is A^*, the units in the valuation ring | |
(or equivalently the things in K^* of norm at most 1). This embeds K^*/A^* | |
into Γ₀ and hence gives K^*/A^* the structure of a linearly ordered commutative group. | |
There is an induced map R → (K^*/A^*), and we call this the | |
_canonical valuation_ associated to v; this valuation is equivalent to v. | |
A technical advantage that this valuation has from the point of view | |
of Lean's type theory is that if R is in universe u₁ and Γ₀ in universe u₂, | |
then v : valuation R Γ₀ will be in universe `max u₁ u₂` but the canonical | |
valuation will just be in universe u₁. In particular, if v and v' are equivalent | |
then their associated canonical valuations are isomorphic and furthermore in the | |
same universe. | |
## Implementation details | |
All of the below names are in the `valuation` namespace. | |
The canonical valuation takes values in `value_monoid v`. Technically | |
this is not defined exactly in the way explained above. | |
So `value_monoid v` is not defined as `with_zero (K^* / A^*)`. | |
Instead, we take the equivalence relation on K^* given by A^*, | |
and extend it in the obvious way to K. The resulting quotient is naturally a monoid, | |
with an order and a zero element. Indeed, it is a linear_ordered_comm_group_with_zero. | |
Its unit group is canonically isomorphic to K^*/A^*. (Note that it is also | |
isomorphic to the subgroup of Γ₀ which Wedhorn calls the value group in [Wedhorn; 1.22]). | |
`value_monoid.to_Γ₀` is the monoid homomorphism to Γ₀. | |
`canonical_valuation v` is the canonical valuation. | |
`canonical_valuation.to_Γ₀ v` is the lemma that says that we can | |
recover v from `canonical_valuation v` using the monoid homomorphism | |
from (value_monoid v) to Γ₀. | |
-- TODO -- rewrite this when I've remembered what we proved. | |
We then prove some of Proposition-and-Definition 1.27 of Wedhorn, | |
where we note that we used (iii) for the definition, and | |
we're now using a different definition to Wedhorn for the value group | |
(because it's isomorphic so no mathematician will care, and | |
it's easier for us because it's in a smaller universe). | |
-/ | |
local attribute [instance] classical.prop_decidable | |
local attribute [instance, priority 0] classical.DLO | |
noncomputable theory | |
universes u u₀ u₁ u₂ u₃ | |
open linear_ordered_structure | |
variables {R : Type u₀} [comm_ring R] | |
/- TODO(jmc): Refactor this file to use valued_field, | |
instead of working explicitly with v.valuation_field. -/ | |
namespace valuation | |
variables {Γ₀ : Type u} [linear_ordered_comm_group_with_zero Γ₀] | |
variables (v : valuation R Γ₀) | |
/-- The elements of `units (valuation_field v)` with norm 1. -/ | |
definition valuation_field_norm_one := | |
is_group_hom.ker (units.map (v.on_valuation_field : v.valuation_field →* Γ₀)) | |
/-- `valuation_field_norm_one v is a normal subgroup of `units (valuation_field v)`. -/ | |
instance (v : valuation R Γ₀) : normal_subgroup (valuation_field_norm_one v) := | |
by unfold valuation_field_norm_one; apply_instance | |
namespace value_monoid | |
/-- The relation on a valuation field induced by the valuation: | |
a ≈ b if and only if there is a unit c of valuation 1 such that a * c = b.-/ | |
def quotient_rel (a b : v.valuation_field) : Prop := | |
∃ c : units v.valuation_field, c ∈ v.valuation_field_norm_one ∧ a * c = b | |
namespace quotient_rel | |
lemma refl (a : v.valuation_field) : quotient_rel v a a := | |
⟨1, is_submonoid.one_mem _, mul_one a⟩ | |
lemma symm (a b : v.valuation_field) : quotient_rel v a b → quotient_rel v b a := | |
by { rintro ⟨c, hc, rfl⟩, exact ⟨c⁻¹, is_subgroup.inv_mem hc, c.mul_inv_cancel_right a⟩ } | |
lemma trans (a b c : v.valuation_field) : | |
quotient_rel v a b → quotient_rel v b c → quotient_rel v a c := | |
begin | |
rintro ⟨c, hc, rfl⟩ ⟨c', hc', rfl⟩, | |
exact ⟨c * c', is_submonoid.mul_mem hc hc', (mul_assoc _ _ _).symm⟩ | |
end | |
end quotient_rel | |
/-- The setoid on a valuation field induced by the valuation: | |
a ≈ b if and only if there is a unit c of valuation 1 such that a * c = b.-/ | |
def setoid : setoid (v.valuation_field) := | |
{ r := quotient_rel v, | |
iseqv := ⟨quotient_rel.refl v, quotient_rel.symm v, quotient_rel.trans v⟩ } | |
end value_monoid | |
/-- The value group of the canonical valuation.-/ | |
def value_monoid (v : valuation R Γ₀) : Type u₀ := | |
@quotient v.valuation_field (value_monoid.setoid v) | |
namespace value_monoid | |
open function | |
/-- The natural map from the canonical value monoid to Γ₀, for a valuation with values in Γ₀. -/ | |
def to_Γ₀ : v.value_monoid → Γ₀ := | |
λ x, quotient.lift_on' x v.on_valuation_field $ | |
begin | |
rintros a b ⟨c, hc, rfl⟩, | |
replace hc : v.on_valuation_field c = 1 := units.ext_iff.mp (is_subgroup.mem_trivial.mp hc), | |
rw [v.on_valuation_field.map_mul, hc, mul_one], | |
end | |
lemma to_Γ₀_inj : injective (to_Γ₀ v) := | |
begin | |
rintros ⟨a⟩ ⟨b⟩ h, | |
change v.on_valuation_field a = v.on_valuation_field b at h, | |
by_cases ha : a = 0, | |
{ subst a, rw [valuation.map_zero, eq_comm, valuation.zero_iff] at h, rw h }, | |
{ have hb : b ≠ 0, | |
{ rintro rfl, rw [valuation.map_zero, valuation.zero_iff] at h, exact ha h }, | |
refine quotient.sound' ⟨(units.mk0 a ha)⁻¹ * (units.mk0 b hb), | |
is_subgroup.mem_trivial.mpr _, (units.mk0 a ha).mul_inv_cancel_left _⟩, | |
rw ← v.on_valuation_field.ne_zero_iff at hb, | |
simp [units.ext_iff, h, hb] } | |
end | |
/--The linear order on the canonical value monoid associated with a valuation.-/ | |
instance : linear_order (v.value_monoid) := | |
linear_order.lift (to_Γ₀ v) (to_Γ₀_inj v) infer_instance | |
lemma to_Γ₀_strict_mono : strict_mono (to_Γ₀ v) := λ a b, id | |
@[simp] lemma triangle (a : v.valuation_field) : | |
to_Γ₀ v (quotient.mk' a) = v.on_valuation_field a := rfl | |
/--The zero element of the canonical value monoid associated with a valuation.-/ | |
instance : has_zero (v.value_monoid) := ⟨quotient.mk' 0⟩ | |
/--The unit element of the canonical value monoid associated with a valuation.-/ | |
instance : has_one (v.value_monoid) := ⟨quotient.mk' 1⟩ | |
/--The inversion function of the canonical value monoid associated with a valuation.-/ | |
instance : has_inv (v.value_monoid) := | |
⟨λ x, quotient.lift_on' x (λ a, quotient.mk' a⁻¹) | |
begin | |
rintros a b ⟨c, hc, rfl⟩, | |
replace hc : v.on_valuation_field c = 1 := units.ext_iff.mp (is_subgroup.mem_trivial.mp hc), | |
apply to_Γ₀_inj, | |
simp [hc], | |
end⟩ | |
/--The multiplication on the canonical value monoid associated with a valuation.-/ | |
instance : has_mul (v.value_monoid) := | |
⟨λ x y, quotient.lift_on₂' x y (λ a b, quotient.mk' (a*b)) | |
begin | |
rintros a₁ b₁ a₂ b₂ ⟨c₁, hc₁, rfl⟩ ⟨c₂, hc₂, rfl⟩, | |
replace hc₁ : v.on_valuation_field c₁ = 1 := units.ext_iff.mp (is_subgroup.mem_trivial.mp hc₁), | |
replace hc₂ : v.on_valuation_field c₂ = 1 := units.ext_iff.mp (is_subgroup.mem_trivial.mp hc₂), | |
apply to_Γ₀_inj, | |
simp [hc₁, hc₂], | |
end⟩ | |
@[simp] lemma to_Γ₀_zero : to_Γ₀ v 0 = 0 := v.on_valuation_field.map_zero | |
@[simp] lemma to_Γ₀_one : to_Γ₀ v 1 = 1 := v.on_valuation_field.map_one | |
@[simp] lemma to_Γ₀_inv (a) : to_Γ₀ v a⁻¹ = (to_Γ₀ v a)⁻¹ := | |
quotient.induction_on' a $ λ x, v.on_valuation_field.map_inv | |
@[simp] lemma to_Γ₀_mul (a b) : to_Γ₀ v (a*b) = (to_Γ₀ v a) * (to_Γ₀ v b) := | |
quotient.induction_on₂' a b $ λ x y, v.on_valuation_field.map_mul x y | |
/--The canonical value monoid associated with a valuation is a group with zero.-/ | |
instance : group_with_zero (v.value_monoid) := | |
begin | |
refine_struct { | |
.. value_monoid.has_zero v, | |
.. value_monoid.has_one v, | |
.. value_monoid.has_inv v, | |
.. value_monoid.has_mul v, }, | |
show decidable_eq (value_monoid v), | |
{ apply_instance }, | |
show (0 : v.value_monoid) ≠ 1, | |
{ assume this, replace := congr_arg (to_Γ₀ v) this, simpa using this, }, | |
all_goals { intros, apply to_Γ₀_inj, simp }, | |
{ exact mul_assoc _ _ _ }, | |
{ apply mul_inv_cancel', intro this, apply_assumption, apply to_Γ₀_inj, simpa } | |
end | |
/--The canonical value monoid associated with a valuation | |
is a linearly ordered commutative group with zero.-/ | |
instance : linear_ordered_comm_group_with_zero (v.value_monoid) := | |
{ mul_comm := λ a b, to_Γ₀_inj v $ by simpa using mul_comm _ _, | |
mul_le_mul_left := λ a b h c, | |
begin | |
rw ← (to_Γ₀_strict_mono v).le_iff_le at h ⊢, | |
simpa using linear_ordered_structure.mul_le_mul_left h _ | |
end, | |
zero_le' := λ a, by { rw ← (to_Γ₀_strict_mono v).le_iff_le, simp }, | |
.. value_monoid.group_with_zero v, | |
.. value_monoid.linear_order v } | |
/-- The natural quotient map from `units (valuation_field v)` to `value_monoid v`. -/ | |
def mk (v : valuation R Γ₀) : | |
valuation_field v →* value_monoid v := | |
{ to_fun := quotient.mk', | |
map_one' := rfl, | |
map_mul' := λ a b, rfl, } | |
end value_monoid | |
/-- The canonical valuation on Frac(R/supp(v)), taking values in `value_monoid v`. -/ | |
def valuation_field.canonical_valuation : | |
valuation (valuation_field v) (value_monoid v) := | |
{ map_zero' := rfl, | |
map_add' := λ a b, | |
begin | |
rw ← (value_monoid.to_Γ₀_strict_mono v).le_iff_le, | |
rw (value_monoid.to_Γ₀_strict_mono v).monotone.map_max, | |
exact v.on_valuation_field.map_add a b | |
end, | |
.. value_monoid.mk v } | |
-- ⟨valuation_field.canonical_valuation_v v, valuation_field.canonical_valuation_v.is_valuation v⟩ | |
/-- The canonical valuation on R/supp(v), taking values in `value_monoid v`. -/ | |
definition quotient.canonical_valuation : | |
valuation (ideal.quotient (supp v)) (value_monoid v) := | |
@comap _ _ _ _ _ _ (localization.of) | |
(by apply_instance) (valuation_field.canonical_valuation v) | |
/-- The canonical valuation on R, taking values in `value_monoid v`. -/ | |
definition canonical_valuation : | |
valuation R (value_monoid v) := | |
(quotient.canonical_valuation v).comap (ideal.quotient.mk (supp v)) | |
/-- The relation between `v.canonical_valuation r` and `v r`. -/ | |
lemma canonical_valuation_eq (r : R) : | |
v.canonical_valuation r = value_monoid.mk v (v.valuation_field_mk r) := rfl | |
namespace canonical_valuation | |
-- This looks handy to know but we never actually use it. | |
/-- Every element of `value_monoid v` is a ratio of things in the image of `canonical_valuation v`.-/ | |
lemma value_monoid.is_ratio (v : valuation R Γ₀) (g : value_monoid v) : | |
∃ r s : R, s ∉ v.supp ∧ v.canonical_valuation s * g = v.canonical_valuation r := | |
begin | |
apply quotient.induction_on' g, clear g, | |
rintros ⟨⟨r⟩, ⟨s⟩, h⟩, | |
change ideal.quotient.mk _ s ∈ _ at h, | |
use [r, s], | |
split, | |
{ show s ∉ supp v, | |
assume mem_supp, | |
erw [localization.fraction_ring.mem_non_zero_divisors_iff_ne_zero, | |
(ideal.quotient.eq_zero_iff_mem).2 mem_supp] at h, | |
contradiction }, | |
show value_monoid.mk v _ * value_monoid.mk v _ = value_monoid.mk v _, | |
rw ← monoid_hom.map_mul, | |
refine congr_arg _ _, | |
let rq := ideal.quotient.mk (supp v) r, | |
let sq := ideal.quotient.mk (supp v) s, | |
show (localization.of sq : valuation_field v) * (localization.mk rq ⟨sq, h⟩) = localization.of rq, | |
erw [localization.mk_eq, mul_comm, mul_assoc, units.inv_val _, mul_one], | |
refl | |
end | |
/-- v can be reconstructed from `canonical_valuation v` by pushing forward along | |
the map `value_monoid v → Γ₀`. -/ | |
lemma to_Γ₀ : | |
(canonical_valuation v).map (monoid_hom.mk (value_monoid.to_Γ₀ v) (value_monoid.to_Γ₀_one v) (value_monoid.to_Γ₀_mul v)) | |
(value_monoid.to_Γ₀_zero v) (value_monoid.to_Γ₀_strict_mono v).monotone = v := | |
ext $ λ r, show v r * (v 1)⁻¹ = v r, by simp | |
end canonical_valuation -- end of namespace | |
end valuation -- end of namespace | |
namespace valuation | |
variables {Γ₀ : Type u} [linear_ordered_comm_group_with_zero Γ₀] | |
variables {Γ'₀ : Type u₁} [linear_ordered_comm_group_with_zero Γ'₀] | |
variables {Γ''₀ : Type u₂} [linear_ordered_comm_group_with_zero Γ''₀] | |
variables {Γ₀₃ : Type u₃} [linear_ordered_comm_group_with_zero Γ₀₃] | |
/-- A valuation is equivalent to its canonical valuation -/ | |
lemma canonical_valuation_is_equiv (v : valuation R Γ₀) : | |
v.canonical_valuation.is_equiv v := | |
begin | |
have h := is_equiv.of_eq (canonical_valuation.to_Γ₀ v), | |
symmetry, | |
refine h.symm.trans _, | |
exact is_equiv_of_map_strict_mono _ _ _, | |
end | |
namespace is_equiv | |
-- Various lemmas about valuations being equivalent. | |
variables {v : valuation R Γ₀} {v₁ : valuation R Γ'₀} {v₂ : valuation R Γ''₀} {v₃ : valuation R Γ₀₃} | |
/-- If J ⊆ supp(v) then pulling back the induced valuation on R / J back to R gives a | |
valuation equivalent to v. -/ | |
lemma on_quot_comap_self {J : ideal R} (hJ : J ≤ supp v) : | |
is_equiv ((v.on_quot hJ).comap (ideal.quotient.mk J)) v := | |
of_eq (on_quot_comap_eq _ _) | |
/-- Two valuations on R/J are equivalent iff their pullbacks to R are equivalent. -/ | |
lemma comap_on_quot (J : ideal R) (v₁ : valuation J.quotient Γ'₀) (v₂ : valuation J.quotient Γ''₀) : | |
(v₁.comap (ideal.quotient.mk J)).is_equiv (v₂.comap (ideal.quotient.mk J)) ↔ v₁.is_equiv v₂ := | |
{ mp := begin rintros h ⟨x⟩ ⟨y⟩, exact h x y end, | |
mpr := λ h, comap _ h } | |
open localization | |
/-- If supp(v)=0 then v is equivalent to the pullback of the extension of v to Frac(R). -/ | |
lemma on_frac_comap_self {R : Type u₀} [integral_domain R] (v : valuation R Γ₀) (hv : supp v = 0) : | |
is_equiv ((v.on_frac hv).comap of) v := | |
of_eq (on_frac_comap_eq v hv) | |
/-- If R is an ID then two valuations on R are equivalent iff their extensions to Frac(R) are | |
equivalent. -/ | |
lemma comap_on_frac {R : Type u₀} [integral_domain R] | |
(v₁ : valuation (fraction_ring R) Γ'₀) (v₂ : valuation (fraction_ring R) Γ''₀) : | |
(v₁.comap of).is_equiv (v₂.comap of) ↔ is_equiv v₁ v₂ := | |
{ mp := begin | |
rintros h ⟨x⟩ ⟨y⟩, | |
erw [← comap_on_frac_eq v₁, ← comap_on_frac_eq v₂], | |
show _ * _ ≤ _ * _ ↔ _ * _ ≤ _ * _, | |
erw div_le_div', erw div_le_div', | |
{ repeat {erw ← valuation.map_mul}, | |
exact h _ _ }, | |
all_goals { intro H, | |
erw [← mem_supp_iff, comap_supp, (supp _).eq_bot_of_prime] at H, | |
simp at H, | |
replace H := fraction_ring.eq_zero_of _ H, | |
refine fraction_ring.mem_non_zero_divisors_iff_ne_zero.mp _ H, | |
apply subtype.val_prop _, | |
apply_instance }, | |
end, | |
mpr := λ h, h.comap _ } | |
/-- [Wed 1.27] (iii) -> first part of (ii). -/ | |
lemma supp_eq (h : v₁.is_equiv v₂) : supp v₁ = supp v₂ := | |
ideal.ext $ λ r, | |
calc r ∈ supp v₁ ↔ v₁ r = 0 : iff.rfl | |
... ↔ v₁ r ≤ v₁ 0 : by simp | |
... ↔ v₂ r ≤ v₂ 0 : h r 0 | |
... ↔ v₂ r = 0 : by simp | |
... ↔ r ∈ supp v₂ : iff.rfl | |
/-- If v₁ and v₂ are equivalent then v₁(r)=1 → v₂(r)=1. -/ | |
lemma v_eq_one_of_v_eq_one (h : v₁.is_equiv v₂) {r : R} : v₁ r = 1 → v₂ r = 1 := | |
begin | |
rw [←v₁.map_one, ←v₂.map_one], | |
intro hr, | |
exact le_antisymm ((h r 1).1 (le_of_eq hr)) ((h 1 r).1 (le_of_eq hr.symm)), | |
end | |
/-- If v₁ and v₂ are equivalent then v₁(r)=1 ↔ v₂(r)=1. -/ | |
lemma v_eq_one (h : v₁.is_equiv v₂) (r : R) : v₁ r = 1 ↔ v₂ r = 1 := | |
⟨v_eq_one_of_v_eq_one h,v_eq_one_of_v_eq_one h.symm⟩ | |
/-- If v₁ and v₂ are equivalent then their canonical valuations are too. -/ | |
lemma canonical_equiv_of_is_equiv (h : v₁.is_equiv v₂) : | |
(canonical_valuation v₁).is_equiv (canonical_valuation v₂) := | |
begin | |
refine is_equiv.trans v₁.canonical_valuation_is_equiv _, | |
refine is_equiv.trans h _, | |
apply is_equiv.symm, | |
exact v₂.canonical_valuation_is_equiv | |
end | |
end is_equiv -- end of namespace | |
/-- The supports of v and v.canonical_valuation are equal. -/ | |
lemma canonical_valuation_supp (v : valuation R Γ₀) : | |
supp (v.canonical_valuation) = supp v := (canonical_valuation_is_equiv v).supp_eq | |
/-- The canonical valuation of a valuation on a field is surjective. -/ | |
lemma canonical_valuation.surjective {K : Type*} [discrete_field K] (v : valuation K Γ₀) : | |
function.surjective (v.canonical_valuation) := | |
begin | |
rintro ⟨⟨⟨r⟩,⟨⟨s⟩,h⟩⟩⟩, | |
refine ⟨s⁻¹ * r, _⟩, | |
apply quotient.sound, | |
refine ⟨1, is_submonoid.one_mem _, _⟩, | |
rw [units.coe_one, mul_one], | |
apply quotient.sound, | |
refine ⟨_, h, _⟩, | |
dsimp only [-sub_eq_add_neg], | |
convert zero_mul _, rw [sub_eq_zero], | |
dsimp, rw ← mul_assoc, | |
congr, symmetry, | |
show ideal.quotient.mk (supp v) _ * ideal.quotient.mk (supp v) _ = 1, | |
rw ← is_ring_hom.map_mul (ideal.quotient.mk (supp v)), | |
convert is_ring_hom.map_one (ideal.quotient.mk (supp v)), | |
apply mul_inv_cancel, | |
contrapose! h, subst s, | |
refine (not_iff_not_of_iff localization.fraction_ring.mem_non_zero_divisors_iff_ne_zero).mpr _, | |
exact not_not.mpr rfl | |
end | |
section Wedhorn1_27_equivalences | |
variables {v : valuation R Γ₀} {v₁ : valuation R Γ'₀} {v₂ : valuation R Γ''₀} {v₃ : valuation R Γ₀₃} | |
open is_group_hom quotient_group function | |
-- We now start on the equivalences of Wedhorn 1.27. The first one is easy. | |
/-- Wedhorn 1.27 (i) → (iii) : An ordered isomorphism of value groups which commutes with | |
canonical valuations implies that valuations are equivalent. -/ | |
lemma of_inj_value_monoid (f : v₁.value_monoid →* v₂.value_monoid) (h₀ : f 0 = 0) (hf : strict_mono f) | |
(H : v₂.canonical_valuation = v₁.canonical_valuation.map f h₀ (hf.monotone)) : | |
v₁.is_equiv v₂ := | |
begin | |
refine (v₁.canonical_valuation_is_equiv.symm).trans _, | |
refine (is_equiv.trans _ (v₂.canonical_valuation_is_equiv)), | |
rw H, | |
symmetry, | |
exact is_equiv_of_map_strict_mono _ _ _ | |
end | |
-- These lemmas look slightly ridiculous to a mathematician but they are avoiding equality of | |
-- types and instead defining and reasoning about maps which mathematicians would call | |
-- "the identiy map". | |
/-- Natural map R/supp(v₁) → R/supp(v₂) induced by equality supp(v₁)=supp(v₂). -/ | |
def quot_of_quot_of_eq_supp (h : supp v₁ = supp v₂) : valuation_ID v₁ → valuation_ID v₂ := | |
ideal.quotient.lift _ (ideal.quotient.mk _) | |
(λ r hr, ideal.quotient.eq_zero_iff_mem.2 $ h ▸ hr) | |
lemma quot_of_quot_of_eq_supp.id (r : valuation_ID v) : quot_of_quot_of_eq_supp (rfl) r = r := | |
by rcases r;refl | |
lemma quot_of_quot_of_eq_supp.comp (h12 : supp v₁ = supp v₂) (h23 : supp v₂ = supp v₃) | |
(r : valuation_ID v₁) : quot_of_quot_of_eq_supp h23 (quot_of_quot_of_eq_supp h12 r) = | |
quot_of_quot_of_eq_supp (h23 ▸ h12 : supp v₁ = supp v₃) r := | |
by rcases r;refl | |
/-- If supp(v₁)=supp(v₂) then R/supp(v₁) is isomorphic to R/supp(v₂). -/ | |
def valuation_ID.equiv (h : supp v₁ = supp v₂) : valuation_ID v₁ ≃ valuation_ID v₂ := | |
{ to_fun := quot_of_quot_of_eq_supp h, | |
inv_fun := quot_of_quot_of_eq_supp (h.symm), | |
left_inv := λ r, by rw quot_of_quot_of_eq_supp.comp h h.symm; exact quot_of_quot_of_eq_supp.id r, | |
right_inv := λ r, by rw quot_of_quot_of_eq_supp.comp h.symm h; exact quot_of_quot_of_eq_supp.id r | |
} | |
@[simp] lemma quot_of_quot_of_eq_supp_quotient_mk (h : supp v₁ = supp v₂) : | |
quot_of_quot_of_eq_supp h ∘ ideal.quotient.mk _ = ideal.quotient.mk _ := | |
funext $ λ x, ideal.quotient.lift_mk | |
lemma quot_of_quot_of_eq_supp_quotient_mk' (h : supp v₁ = supp v₂) (r : R) : | |
quot_of_quot_of_eq_supp h (ideal.quotient.mk _ r) = ideal.quotient.mk _ r := | |
by rw ←quot_of_quot_of_eq_supp_quotient_mk h | |
/-- If supp(v₁)=supp(v₂) then the identity map R/supp(v₁) → R/supp(v₂) is a ring homomorphism. -/ | |
instance quot_of_quot_of_eq_supp.is_ring_hom (h : supp v₁ = supp v₂) : | |
is_ring_hom (quot_of_quot_of_eq_supp h) := | |
by delta quot_of_quot_of_eq_supp; apply_instance | |
/-- If supp(v₁)=supp(v₂) then R/supp(v₁) and R/supp(v₂) are isomorphic rings. -/ | |
def quot_equiv_quot_of_eq_supp (h : supp v₁ = supp v₂) : valuation_ID v₁ ≃+* valuation_ID v₂ := | |
{ .. ring_hom.of (quot_of_quot_of_eq_supp h), | |
.. valuation_ID.equiv h } | |
/-- If supp(v₁)=supp(v₂) then the triangle R → R/supp(v₁) → R/supp(v₂) commutes. -/ | |
lemma quot_equiv_quot_mk_eq_mk (h : supp v₁ = supp v₂) (r : R) : | |
(quot_equiv_quot_of_eq_supp h).to_equiv (ideal.quotient.mk _ r) = ideal.quotient.mk _ r := | |
quot_of_quot_of_eq_supp_quotient_mk' h r | |
lemma quot_of_quot_of_eq_supp_inj (h : supp v₁ = supp v₂) : injective (quot_of_quot_of_eq_supp h) := | |
injective_of_left_inverse (quot_equiv_quot_of_eq_supp h).left_inv | |
lemma valuation_ID_le_of_le_of_equiv (h : v₁.is_equiv v₂) (a b : valuation_ID v₁) : | |
(a ≤ b) ↔ | |
quot_of_quot_of_eq_supp (is_equiv.supp_eq h) a ≤ quot_of_quot_of_eq_supp (is_equiv.supp_eq h) b := | |
by rcases a; rcases b; exact (h a b) | |
/-- If v₁ and v₂ are equivalent, then the associated preorders on | |
R/supp(v₁)=R/supp(v₂) are equivalent. -/ | |
def valuation_ID.preorder_equiv (h : v₁.is_equiv v₂) : | |
preorder_equiv (valuation_ID v₁) (valuation_ID v₂) := | |
{ le_map := valuation_ID_le_of_le_of_equiv h, | |
..valuation_ID.equiv h.supp_eq | |
} | |
section valuation_field | |
open localization | |
/-- The natural map Frac(R/supp(v₁)) → Frac(R/supp(v₂)) if supp(v₁) = supp(v₂). -/ | |
def valfield_of_valfield_of_eq_supp (h : supp v₁ = supp v₂) : | |
valuation_field v₁ → valuation_field v₂ := | |
fraction_ring.map (quot_of_quot_of_eq_supp h) (quot_of_quot_of_eq_supp_inj h) | |
/-- The triangle R → Frac(R/supp(v₁)) → Frac(R/supp(v₂)) commutes if supp(v₁)=supp(v₂). -/ | |
lemma valfield_of_valfield_of_eq_supp_quotient_mk (h : supp v₁ = supp v₂) (r : R) : | |
valfield_of_valfield_of_eq_supp h (of $ ideal.quotient.mk _ r) = of (ideal.quotient.mk _ r) := | |
begin | |
unfold valfield_of_valfield_of_eq_supp, | |
rw fraction_ring.map_of, | |
rw quot_of_quot_of_eq_supp_quotient_mk', | |
end | |
/-- If supp(v₁)=supp(v₂) then the natural map Frac(R/supp(v₁)) → Frac(R/supp(v₂)) is a | |
homomorphism of fields. -/ | |
instance is_ring_hom_of_supp (h : supp v₁ = supp v₂) : is_ring_hom (valfield_of_valfield_of_eq_supp h) := | |
by delta valfield_of_valfield_of_eq_supp; apply_instance | |
-- This should be possible using type class inference but there are max class | |
-- instance issues. | |
/-- If supp(v₁)=supp(v₂) then the natural map Frac(R/supp(v₁)) → Frac(R/supp(v₂)) is a | |
homomorphism of monoids. -/ | |
instance (h : supp v₁ = supp v₂) : is_monoid_hom (valfield_of_valfield_of_eq_supp h) := | |
is_semiring_hom.is_monoid_hom (valfield_of_valfield_of_eq_supp h) | |
/-- If supp(v₁)=supp(v₂) then the natural map Frac(R/supp(v₁)) → Frac(R/supp(v₂)) is an | |
isomorphism of rings. -/ | |
def valfield_equiv_valfield_of_eq_supp (h : supp v₁ = supp v₂) : | |
valuation_field v₁ ≃+* valuation_field v₂ := | |
fraction_ring.equiv_of_equiv (quot_equiv_quot_of_eq_supp h) | |
lemma valfield_equiv_eq_valfield_of_valfield (h : supp v₁ = supp v₂) (q : valuation_field v₁) : | |
(valfield_equiv_valfield_of_eq_supp h).to_equiv q = valfield_of_valfield_of_eq_supp h q := rfl | |
lemma valfield_equiv_valfield_mk_eq_mk (h : supp v₁ = supp v₂) (r : R) : | |
(valfield_equiv_valfield_of_eq_supp h).to_equiv (of $ ideal.quotient.mk _ r) | |
= of (ideal.quotient.mk _ r) := | |
valfield_of_valfield_of_eq_supp_quotient_mk h r | |
/-- If v₁ and v₂ are equivalent then the induced valuations on R/supp(v₁) and R/supp(v₂) | |
(pulled back to R/supp(v₁) are equivalent. -/ | |
lemma is_equiv.comap_quot_of_quot (h : v₁.is_equiv v₂) : | |
(v₁.on_quot (set.subset.refl _)).is_equiv | |
((v₂.on_quot (set.subset.refl _)).comap (quot_of_quot_of_eq_supp h.supp_eq)) := | |
begin | |
rw [← is_equiv.comap_on_quot, ← comap_comp], | |
simp [h], | |
end | |
/-- If v₁ and v₂ are equivalent then the induced valuations on Frac(R/supp(v₁)) and | |
Frac(R/supp(v₂)) [pulled back] are equivalent. -/ | |
lemma is_equiv.on_valuation_field_is_equiv (h : v₁.is_equiv v₂) : | |
v₁.on_valuation_field.is_equiv | |
(v₂.on_valuation_field.comap (valfield_of_valfield_of_eq_supp h.supp_eq)) := | |
begin | |
delta valfield_of_valfield_of_eq_supp, delta on_valuation_field, | |
erw [← is_equiv.comap_on_frac, ← comap_comp, on_frac_comap_eq], | |
simp [comap_comp, h.comap_quot_of_quot], | |
end | |
/-- The valuation rings of two equivalent valuations are isomorphic (as types). -/ | |
def val_ring_equiv_of_is_equiv_aux (h : v₁.is_equiv v₂) : | |
v₁.valuation_ring ≃ v₂.valuation_ring := | |
equiv.subtype_congr (valfield_equiv_valfield_of_eq_supp h.supp_eq).to_equiv $ | |
begin | |
intro x, | |
show _ ≤ _ ↔ _ ≤ _, | |
erw [← v₁.on_valuation_field.map_one, h.on_valuation_field_is_equiv], | |
convert iff.refl _, | |
symmetry, | |
exact valuation.map_one _, | |
end | |
/-- The valuation rings of two equivalent valuations are isomorphic as rings. -/ | |
def val_ring_equiv_of_is_equiv (h : v₁.is_equiv v₂) : v₁.valuation_ring ≃+* v₂.valuation_ring := | |
{ map_add' := λ x y, subtype.val_injective $ | |
(valfield_equiv_valfield_of_eq_supp h.supp_eq).map_add x y, | |
map_mul' := λ x y, subtype.val_injective $ | |
(valfield_equiv_valfield_of_eq_supp h.supp_eq).map_mul x y, | |
.. val_ring_equiv_of_is_equiv_aux h, } | |
-- we omit the proof that the diagram {r | v₁ r ≤ 1} → v₁.valuation_ring → v₂.valuation_ring | |
-- commutes. | |
lemma valfield_le_of_le_of_equiv (h : v₁.is_equiv v₂) (a b : valuation_field v₁) : | |
(a ≤ b) ↔ valfield_of_valfield_of_eq_supp (h.supp_eq) a ≤ | |
valfield_of_valfield_of_eq_supp (h.supp_eq) b := | |
calc a ≤ b ↔ v₁.on_valuation_field a ≤ v₁.on_valuation_field b : iff.rfl | |
... ↔ _ : h.on_valuation_field_is_equiv a b | |
def valfield.preorder_equiv (h : v₁.is_equiv v₂) : | |
preorder_equiv (valuation_field v₁) (valuation_field v₂) := | |
{ le_map := valfield_le_of_le_of_equiv h, | |
..(valfield_equiv_valfield_of_eq_supp h.supp_eq).to_equiv | |
} | |
-- units | |
/-- The induced map between the unit groups of the valuation fields of | |
two valuations with the same support.-/ | |
def valfield_units_of_valfield_units_of_eq_supp (h : supp v₁ = supp v₂) : | |
units (valuation_field v₁) → units (valuation_field v₂) := | |
units.map' $ valfield_of_valfield_of_eq_supp h | |
/-- The induced map between the unit groups of the valuation fields of | |
two valuations with the same support is a group homomorphism.-/ | |
instance valfield_units.is_group_hom (h : supp v₁ = supp v₂) : | |
is_group_hom (valfield_units_of_valfield_units_of_eq_supp h) := | |
by unfold valfield_units_of_valfield_units_of_eq_supp; apply_instance | |
lemma units_valfield_of_units_valfield_of_eq_supp_mk | |
(h : supp v₁ = supp v₂) (r : R) (hr : r ∉ supp v₁) : | |
valfield_units_of_valfield_units_of_eq_supp h (units_valfield_mk v₁ r hr) | |
= units_valfield_mk v₂ r (h ▸ hr) := units.ext $ valfield_equiv_valfield_mk_eq_mk h r | |
def valfield_units_equiv_units_of_eq_supp (h : supp v₁ = supp v₂) : | |
(units (valuation_field v₁)) ≃* (units (valuation_field v₂)) := | |
units.map_equiv { .. valfield_equiv_valfield_of_eq_supp h } | |
end valuation_field -- section | |
lemma valfield_units_equiv_units_mk_eq_mk (h : supp v₁ = supp v₂) (r : R) (hr : r ∉ supp v₁): | |
(valfield_units_equiv_units_of_eq_supp h).to_equiv (units_valfield_mk v₁ r hr) = | |
units_valfield_mk v₂ r (h ▸ hr) := units_valfield_of_units_valfield_of_eq_supp_mk h r hr | |
def valfield_units_preorder_equiv (h : v₁.is_equiv v₂) : | |
preorder_equiv (units (valuation_field v₁)) (units (valuation_field v₂)) := | |
{ le_map := λ u v, @le_equiv.le_map _ _ _ _ (valfield.preorder_equiv h) u.val v.val, | |
..valfield_units_equiv_units_of_eq_supp (h.supp_eq) } | |
lemma val_one_iff_unit_val_one (x : units (valuation_field v)) : | |
x ∈ valuation_field_norm_one v ↔ v.on_valuation_field x = 1 := | |
calc x ∈ valuation_field_norm_one v ↔ | |
(units.map (v.on_valuation_field : v.valuation_field →* Γ₀) x = 1) : is_subgroup.mem_trivial | |
... ↔ v.on_valuation_field x = 1 : units.ext_iff | |
lemma is_equiv.norm_one_eq_norm_one (h : is_equiv v₁ v₂) : | |
valfield_units_of_valfield_units_of_eq_supp (is_equiv.supp_eq h) ⁻¹' valuation_field_norm_one v₂ | |
= valuation_field_norm_one v₁ := | |
begin | |
ext x, | |
rw [set.mem_preimage, val_one_iff_unit_val_one x, | |
is_equiv.v_eq_one (is_equiv.on_valuation_field_is_equiv h) x, val_one_iff_unit_val_one], | |
refl, | |
end | |
/-- Two equivalent valuations have isomorphic canonical value monoids. | |
This is part of the statement of [Wedhorn, 1.27 (iii) -> (i)]. -/ | |
def is_equiv.value_mul_equiv (h : is_equiv v₁ v₂) : | |
(value_monoid v₁) ≃* (value_monoid v₂) := | |
{ to_fun := λ x, quotient.lift_on' x ((valuation_field.canonical_valuation v₂).comap (valfield_of_valfield_of_eq_supp h.supp_eq)) | |
begin | |
rintros a b ⟨c, hc, rfl⟩, | |
rw valuation.map_mul, | |
convert (mul_one _).symm, | |
rw val_one_iff_unit_val_one at hc, | |
rw h.on_valuation_field_is_equiv.v_eq_one c at hc, | |
suffices : v₂.on_valuation_field.is_equiv (valuation_field.canonical_valuation v₂), | |
{ have tmp := (this.comap (valfield_of_valfield_of_eq_supp _)), | |
rwa tmp.v_eq_one at hc, }, | |
intros a b, exact iff.rfl | |
end, | |
inv_fun := λ x, quotient.lift_on' x ((valuation_field.canonical_valuation v₁).comap (valfield_of_valfield_of_eq_supp h.symm.supp_eq)) | |
begin | |
rintros a b ⟨c, hc, rfl⟩, | |
rw valuation.map_mul, | |
convert (mul_one _).symm, | |
rw val_one_iff_unit_val_one at hc, | |
rw h.symm.on_valuation_field_is_equiv.v_eq_one c at hc, | |
suffices : v₁.on_valuation_field.is_equiv (valuation_field.canonical_valuation v₁), | |
{ have tmp := (this.comap (valfield_of_valfield_of_eq_supp _)), | |
rwa tmp.v_eq_one at hc, }, | |
intros a b, exact iff.rfl | |
end, | |
left_inv := by { rintro ⟨a⟩, apply quotient.sound', | |
refine ⟨1, is_submonoid.one_mem _, _⟩, | |
rw [units.coe_one, mul_one], | |
exact (valfield_equiv_valfield_of_eq_supp h.supp_eq).to_equiv.left_inv a }, | |
right_inv := by { rintro ⟨a⟩, apply quotient.sound', | |
refine ⟨1, is_submonoid.one_mem _, _⟩, | |
rw [units.coe_one, mul_one], | |
exact (valfield_equiv_valfield_of_eq_supp h.symm.supp_eq).to_equiv.left_inv a }, | |
map_mul' := | |
begin | |
rintro ⟨a⟩ ⟨b⟩, apply quotient.sound', | |
refine ⟨1, is_submonoid.one_mem _, _⟩, | |
rw [units.coe_one, mul_one], | |
exact is_ring_hom.map_mul _, | |
end } | |
-- ordering part of 1.27 (iii) -> (i) | |
lemma is_equiv.value_monoid_order_equiv_aux (h : is_equiv v₁ v₂) (x y : value_monoid v₁) (h2 : x ≤ y) : | |
h.value_mul_equiv x ≤ h.value_mul_equiv y := | |
begin | |
induction x with x, induction y, swap, refl, swap, refl, | |
exact (is_equiv.on_valuation_field_is_equiv h x y).1 h2, | |
end | |
/-- The canonical value monoids of two equivalent valuations are order equivalent.-/ | |
def is_equiv.value_monoid_le_equiv (h : is_equiv v₁ v₂) : | |
(value_monoid v₁) ≃≤ (value_monoid v₂) := | |
{ le_map := λ x y, linear_order_le_iff_of_monotone_injective | |
(h.value_mul_equiv.to_equiv.bijective.1) | |
(is_equiv.value_monoid_order_equiv_aux h) x y | |
..h.value_mul_equiv} | |
lemma is_equiv.value_mul_equiv_monotone (h : is_equiv v₁ v₂) : | |
monotone (h.value_mul_equiv) := λ x y, | |
(@@le_equiv.le_map _ _ (is_equiv.value_monoid_le_equiv h)).1 | |
lemma is_equiv.value_mul_equiv_map_zero (h : is_equiv v₁ v₂) : | |
h.value_mul_equiv 0 = 0 := | |
begin | |
apply quotient.sound', | |
refine ⟨1, is_submonoid.one_mem _, _⟩, | |
rw [units.coe_one, mul_one], | |
exact is_ring_hom.map_zero _, | |
end | |
lemma is_equiv.with_zero_value_mul_equiv_mk_eq_mk (h : v₁.is_equiv v₂) : | |
(canonical_valuation v₁).map | |
h.value_mul_equiv.to_monoid_hom h.value_mul_equiv_map_zero h.value_mul_equiv_monotone = | |
canonical_valuation v₂ := | |
begin | |
ext r, apply quotient.sound', | |
refine ⟨1, is_submonoid.one_mem _, _⟩, | |
rw [units.coe_one, mul_one], | |
apply valfield_of_valfield_of_eq_supp_quotient_mk, | |
end | |
end Wedhorn1_27_equivalences -- section | |
end valuation | |