Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import topology.basic | |
import topology.algebra.ring | |
import algebra.group_power | |
import ring_theory.subring | |
import tactic.ring | |
import for_mathlib.topological_rings | |
import for_mathlib.nonarchimedean.adic_topology | |
/-! | |
# Power bounded elements | |
The theory of topologically nilpotent, bounded, and power-bounded | |
elements and subsets of topological rings. | |
-/ | |
local attribute [instance] set.pointwise_mul_semiring | |
open set | |
variables {R : Type*} [comm_ring R] [topological_space R] | |
/- Note: the following definitions are made without assuming | |
any compatibility between the algebraic and topological structure on R. | |
Of course, in applications one will assume that R is a topological ring. -/ | |
/--An element r of a topological ring is topologically nilpotent if for all neighbourhouds U of 0, | |
there exists a natural number N such that r^n ∈ U for all n > N. | |
See [Wedhorn, Def 5.25, p. 36]. -/ | |
def is_topologically_nilpotent (r : R) : Prop := | |
∀ U ∈ (nhds (0 : R)), ∃ N : ℕ, ∀ n : ℕ, n > N → r^n ∈ U | |
/--A subset T of a topological ring is topologically nilpotent if for all neighbourhouds U of 0, | |
there exists a natural number N such that r^n ∈ U for all n > N. | |
(Here T^n is the set {t₁ * t₂ * ⋯ * tₙ | t₁, t₂, …, tₙ ∈ T}.) -/ | |
def is_topologically_nilpotent_subset (T : set R) : Prop := | |
∀ U ∈ (nhds (0 : R)), ∃ n : ℕ, T ^ n ⊆ U | |
/--A subset B of a topological ring is bounded if for all neighbourhoods U of 0 ∈ R, | |
there exists a neighbourhood V or 0 such that for all v ∈ V and b ∈ B we have v*b ∈ U. | |
See [Wedhorn, Def 5.27, p. 36]. -/ | |
def is_bounded (B : set R) : Prop := | |
∀ U ∈ nhds (0 : R), ∃ V ∈ nhds (0 : R), ∀ v ∈ V, ∀ b ∈ B, v*b ∈ U | |
/--A subset B of a topological ring is bounded if and only if for all neighbourhoods U of 0 ∈ R, | |
there exists a neighbourhood V or 0 such that for all v ∈ V and b ∈ B we have V*B ⊆ U. | |
(Here V*B denotes the set {v * b | v ∈ V, b ∈ B}.) -/ | |
lemma is_bounded_iff (B : set R) : | |
is_bounded B ↔ ∀ U ∈ nhds (0 : R), ∃ V ∈ nhds (0 : R), V * B ⊆ U := | |
forall_congr $ λ U, imp_congr iff.rfl $ exists_congr $ λ V, exists_congr $ λ hV, | |
begin | |
split, | |
{ rintros H _ ⟨v, hv, b, hb, rfl⟩, exact H v hv b hb }, | |
{ intros H v hv b hb, exact H ⟨v, hv, b, hb, rfl⟩ } | |
end | |
section topological_ring | |
variables [topological_ring R] | |
/--A topological ring with adic topology is bounded.-/ | |
lemma is_adic.is_bounded (h : is_adic R) : is_bounded (univ : set R) := | |
begin | |
intros U hU, | |
rw mem_nhds_sets_iff at hU, | |
rcases hU with ⟨V, hV₁, ⟨hV₂, h0⟩⟩, | |
tactic.unfreeze_local_instances, | |
rcases h with ⟨J, hJ⟩, | |
rw is_ideal_adic_iff at hJ, | |
have H : (∃ (n : ℕ), (J^n).carrier ⊆ V) := | |
begin | |
apply hJ.2, | |
exact mem_nhds_sets hV₂ h0, | |
end, | |
rcases H with ⟨n, hn⟩, | |
use (J^n).carrier, -- the key step | |
split, | |
{ exact mem_nhds_sets (hJ.1 n) (J^n).zero_mem }, | |
{ rintros a ha b hb, | |
apply hV₁, | |
exact hn ((J^n).mul_mem_right ha), } | |
end | |
section | |
open submodule topological_add_group | |
set_option class.instance_max_depth 58 | |
/--A subset B of a nonarchimedean ring is bounded if and only if | |
for all neighbourhoods U of 0 ∈ R, there exists an open additive subgroup V such that | |
V * B generates a subgroup contained in U. -/ | |
lemma is_bounded_add_subgroup_iff (hR : nonarchimedean R) (B : set R) : | |
is_bounded B ↔ ∀ U ∈ nhds (0:R), ∃ V : open_add_subgroup R, | |
(↑((V : set R) • span ℤ B) : set R) ⊆ U := | |
begin | |
split, | |
{ rintros H U hU, | |
cases hR U hU with W hW, | |
rw is_bounded_iff at H, | |
rcases H _ W.mem_nhds_zero with ⟨V', hV', H'⟩, | |
cases hR V' hV' with V hV, | |
use V, | |
refine set.subset.trans _ hW, | |
change ↑(span _ _ * span _ _) ⊆ _, | |
rw [span_mul_span, span_int_eq_add_group_closure, add_group.closure_subset_iff], | |
exact set.subset.trans (set.pointwise_mul_subset_mul hV (set.subset.refl B)) H' }, | |
{ intros H, | |
rw is_bounded_iff, | |
intros U hU, | |
cases H U hU with V hV, | |
use [V, V.mem_nhds_zero], | |
refine set.subset.trans _ hV, | |
rintros _ ⟨v, hv, b, hb, rfl⟩, | |
exact mul_mem_mul (subset_span hv) (subset_span hb) } | |
end | |
/--If J is an ideal in a topological ring whose topology is J-adic, | |
then J is topologically nilpotent.-/ | |
lemma is_ideal_adic.topologically_nilpotent {J : ideal R} (h : is-J-adic) : | |
is_topologically_nilpotent_subset (↑J : set R) := | |
begin | |
rw is_ideal_adic_iff at h, | |
intros U hU, | |
cases h.2 U hU with n hn, | |
use n, | |
exact set.subset.trans (J.pow_subset_pow) hn | |
end | |
end | |
end topological_ring | |
namespace is_bounded | |
open topological_add_group | |
/--A subset of a bounded subset is bounded. See [Wedhorn, Rmk 5.28(2)].-/ | |
lemma subset {S₁ S₂ : set R} (h : S₁ ⊆ S₂) (H : is_bounded S₂) : is_bounded S₁ := | |
begin | |
intros U hU, | |
rcases H U hU with ⟨V, hV₁, hV₂⟩, | |
use [V, hV₁], | |
intros v hv b hb, | |
exact hV₂ _ hv _ (h hb), | |
end | |
/--The subgroup generated by a bounded subset of a nonarchimedean ring is bounded. | |
See [Wedhorn, Prop 5.30(1)].-/ | |
lemma add_group.closure [topological_ring R] (hR : nonarchimedean R) (T : set R) | |
(hT : is_bounded T) : is_bounded (add_group.closure T) := | |
begin | |
intros U hU, | |
-- find subgroup U' in U | |
rcases hR U hU with ⟨U', hU'⟩, | |
-- U' still a nhd | |
-- Use boundedness hypo for T with U' to get V | |
rcases hT (U' : set R) U'.mem_nhds_zero with ⟨V, hV, hB⟩, | |
-- find subgroup V' in V | |
rcases hR V hV with ⟨V', hV'⟩, | |
-- V' works for our proof | |
use [V', V'.mem_nhds_zero], | |
intros v hv b hb, | |
-- Suffices to prove we're in U' | |
apply hU', | |
-- Prove the result by induction | |
apply add_group.in_closure.rec_on hb, | |
{ intros t ht, | |
exact hB v (hV' hv) t ht }, | |
{ rw mul_zero, exact U'.zero_mem }, | |
{ intros a Ha Hv, | |
rwa [←neg_mul_comm, neg_mul_eq_neg_mul_symm, is_add_subgroup.neg_mem_iff] }, | |
{ intros a b ha hb Ha Hb, | |
rw [mul_add], | |
exact U'.add_mem Ha Hb } | |
end | |
end is_bounded | |
/--An element r of a topological ring is power bounded if the set of all positive powers of r | |
is a bounded subset. See [Wedhorn, Def 5.27].-/ | |
definition is_power_bounded (r : R) : Prop := is_bounded (powers r) | |
/--A subset T of a topological ring is power bounded if the submonoid generated by T is bounded. | |
See [Wedhorn, Def 5.27].-/ | |
definition is_power_bounded_subset (T : set R) : Prop := is_bounded (monoid.closure T) | |
namespace power_bounded | |
open topological_add_group | |
/-- 0 is power bounded.-/ | |
lemma zero : is_power_bounded (0 : R) := | |
λ U hU, ⟨U, | |
begin | |
split, {exact hU}, | |
intros v hv b H, | |
induction H with n H, | |
induction n ; { simp [H.symm, pow_succ, mem_of_nhds hU], try {assumption} } | |
end⟩ | |
/-- 1 is power bounded.-/ | |
lemma one : is_power_bounded (1 : R) := | |
λ U hU, ⟨U, | |
begin | |
split, {exact hU}, | |
intros v hv b H, | |
cases H with n H, | |
simpa [H.symm] | |
end⟩ | |
/-- An element r is power bounded if and only if the singleton {r} is power bounded.-/ | |
lemma singleton (r : R) : is_power_bounded r ↔ is_power_bounded_subset ({r} : set R) := | |
begin | |
unfold is_power_bounded, | |
unfold is_power_bounded_subset, | |
rw monoid.closure_singleton, | |
end | |
/-- A subset of a power bounded set is power bounded. See [Wedhorn, Rmk 5.28(2)].-/ | |
lemma subset {B C : set R} (h : B ⊆ C) (hC : is_power_bounded_subset C) : | |
is_power_bounded_subset B := | |
λ U hU, exists.elim (hC U hU) $ | |
λ V ⟨hV, hC⟩, ⟨V, hV, λ v hv b hb, hC v hv b $ monoid.closure_mono h hb⟩ | |
/--The union of two power bounded sets is power bounded. See [Wedhorn, Rmk 5.28(3)].-/ | |
lemma union {S T : set R} (hS : is_power_bounded_subset S) (hT : is_power_bounded_subset T) : | |
is_power_bounded_subset (S ∪ T) := | |
begin | |
intros U hU, | |
rcases hT U hU with ⟨V, hV, hVU⟩, | |
rcases hS V hV with ⟨W, hW, hWV⟩, | |
use [W, hW], | |
intros v hv b hb, | |
rw monoid.mem_closure_union_iff at hb, | |
rcases hb with ⟨y, hy, z, hz, rfl⟩, | |
rw [←mul_assoc], | |
apply hVU _ _ _ hz, | |
exact hWV _ hv _ hy, | |
end | |
/--The monoid generated by a power bounded subset is power bounded.-/ | |
lemma monoid.closure {T : set R} | |
(hT : is_power_bounded_subset T) : is_power_bounded_subset (monoid.closure T) := | |
begin | |
refine is_bounded.subset _ hT, | |
apply monoid.closure_subset, | |
refl | |
end | |
/--The product of two power bounded elements is power bounded.-/ | |
lemma mul (a b : R) | |
(ha : is_power_bounded a) (hb : is_power_bounded b) : | |
is_power_bounded (a * b) := | |
begin | |
rw singleton at ha hb ⊢, | |
refine subset _ (monoid.closure (union ha hb)), | |
rw [set.singleton_subset_iff, monoid.mem_closure_union_iff], | |
refine ⟨a, _, b, _, rfl⟩; exact monoid.subset_closure (set.mem_singleton _) | |
end | |
section topological_ring | |
variables [topological_ring R] | |
/--The subgroup generated by a power bounded subset of a nonarchimedean ring is power bounded. | |
See [Wedhorn, Prop 5.30(1)].-/ | |
lemma add_group.closure (hR : nonarchimedean R) {T : set R} | |
(hT : is_power_bounded_subset T) : is_power_bounded_subset (add_group.closure T) := | |
begin | |
refine is_bounded.subset _ (is_bounded.add_group.closure hR _ hT), | |
intros a ha, | |
apply monoid.in_closure.rec_on ha, | |
{ apply add_group.closure_mono, | |
exact monoid.subset_closure }, | |
{ apply add_group.mem_closure, | |
exact monoid.in_closure.one _ }, | |
{ intros a b ha hb Ha Hb, | |
show a * b ∈ ring.closure T, | |
exact is_submonoid.mul_mem Ha Hb } | |
end | |
/--The subring generated by a power bounded subset of a nonarchimedean ring is power bounded. | |
See [Wedhorn, Prop 5.30(2)].-/ | |
lemma ring.closure (hR : nonarchimedean R) (T : set R) | |
(hT : is_power_bounded_subset T) : is_power_bounded_subset (ring.closure T) := | |
add_group.closure hR $ monoid.closure hT | |
/--The subring generated by a power bounded subset of a nonarchimedean ring is bounded.-/ | |
lemma ring.closure' (hR : nonarchimedean R) (T : set R) | |
(hT : is_power_bounded_subset T) : is_bounded (_root_.ring.closure T) := | |
is_bounded.subset monoid.subset_closure (ring.closure hR _ hT) | |
/--The sum of two power bounded elements of a nonarchimedean ring is power bounded.-/ | |
lemma add (hR : nonarchimedean R) (a b : R) | |
(ha : is_power_bounded a) (hb : is_power_bounded b) : | |
is_power_bounded (a + b) := | |
begin | |
rw singleton at ha hb ⊢, | |
refine subset _ (add_group.closure hR (union ha hb)), | |
rw set.singleton_subset_iff, | |
apply is_add_submonoid.add_mem; | |
apply add_group.subset_closure; simp | |
end | |
end topological_ring | |
end power_bounded | |
variable (R) | |
/-- The subring of power bounded elements. | |
(Note that this definition makes sense for all R, | |
but this subset is only a subring for certain rings, such as non-archimedean rings.) -/ | |
definition power_bounded_subring := {r : R | is_power_bounded r} | |
variable {R} | |
namespace power_bounded_subring | |
open topological_add_group | |
/--The coercion from the power bounded subring to the ambient ring.-/ | |
instance : has_coe (power_bounded_subring R) R := ⟨subtype.val⟩ | |
lemma zero_mem : (0 : R) ∈ power_bounded_subring R := power_bounded.zero | |
lemma one_mem : (1 : R) ∈ power_bounded_subring R := power_bounded.one | |
lemma mul_mem : | |
∀ ⦃a b : R⦄, a ∈ power_bounded_subring R → b ∈ power_bounded_subring R → | |
a * b ∈ power_bounded_subring R := | |
power_bounded.mul | |
/--The subset of power bounded elements of a topological ring is a submonoid.-/ | |
instance : is_submonoid (power_bounded_subring R) := | |
{ one_mem := one_mem, | |
mul_mem := mul_mem } | |
section topological_ring | |
variables [topological_ring R] | |
lemma add_mem (h : nonarchimedean R) ⦃a b : R⦄ | |
(ha : a ∈ power_bounded_subring R) (hb : b ∈ power_bounded_subring R) : | |
a + b ∈ power_bounded_subring R := | |
power_bounded.add h a b ha hb | |
lemma neg_mem : ∀ ⦃a : R⦄, a ∈ power_bounded_subring R → -a ∈ power_bounded_subring R := | |
λ a ha U hU, | |
begin | |
let Usymm := U ∩ {u | -u ∈ U}, | |
have hUsymm : Usymm ∈ (nhds (0 : R)) := | |
begin | |
apply filter.inter_mem_sets hU, | |
apply continuous.tendsto (topological_add_group.continuous_neg R) 0, | |
simpa | |
end, | |
rcases ha Usymm hUsymm with ⟨V, ⟨V_nhd, hV⟩⟩, | |
use [V, V_nhd], | |
rintros v hv _ ⟨n, rfl⟩, | |
rw show v * (-a)^n = ((-1)^n * v) * a^n, | |
by { rw [neg_eq_neg_one_mul, mul_pow], ring }, | |
suffices H : (-1)^n * v * a^n ∈ Usymm, | |
{ exact H.left }, | |
have H := hV v hv (a^n) ⟨n, rfl⟩, | |
cases (@neg_one_pow_eq_or R _ n) with h h; | |
simpa [h, H.1, H.2] using H | |
end | |
/--The subset of power bounded elements of a nonarchimedean ring is a subgroup.-/ | |
instance (hR : nonarchimedean R) : is_add_subgroup (power_bounded_subring R) := | |
{ zero_mem := zero_mem, | |
add_mem := add_mem hR, | |
neg_mem := neg_mem } | |
/--The subset of power bounded elements of a nonarchimedean ring is a subring.-/ | |
instance (hR : nonarchimedean R) : is_subring (power_bounded_subring R) := | |
{ ..power_bounded_subring.is_submonoid, | |
..power_bounded_subring.is_add_subgroup hR } | |
end topological_ring | |
variable (R) | |
/--A topological ring is uniform if the subset of power bounded elements is bounded.-/ | |
definition is_uniform : Prop := is_bounded (power_bounded_subring R) | |
end power_bounded_subring | |