import topology.basic import topology.algebra.ring import algebra.group_power import ring_theory.subring import tactic.ring import for_mathlib.topological_rings import for_mathlib.nonarchimedean.adic_topology /-! # Power bounded elements The theory of topologically nilpotent, bounded, and power-bounded elements and subsets of topological rings. -/ local attribute [instance] set.pointwise_mul_semiring open set variables {R : Type*} [comm_ring R] [topological_space R] /- Note: the following definitions are made without assuming any compatibility between the algebraic and topological structure on R. Of course, in applications one will assume that R is a topological ring. -/ /--An element r of a topological ring is topologically nilpotent if for all neighbourhouds U of 0, there exists a natural number N such that r^n ∈ U for all n > N. See [Wedhorn, Def 5.25, p. 36]. -/ def is_topologically_nilpotent (r : R) : Prop := ∀ U ∈ (nhds (0 : R)), ∃ N : ℕ, ∀ n : ℕ, n > N → r^n ∈ U /--A subset T of a topological ring is topologically nilpotent if for all neighbourhouds U of 0, there exists a natural number N such that r^n ∈ U for all n > N. (Here T^n is the set {t₁ * t₂ * ⋯ * tₙ | t₁, t₂, …, tₙ ∈ T}.) -/ def is_topologically_nilpotent_subset (T : set R) : Prop := ∀ U ∈ (nhds (0 : R)), ∃ n : ℕ, T ^ n ⊆ U /--A subset B of a topological ring is bounded if for all neighbourhoods U of 0 ∈ R, there exists a neighbourhood V or 0 such that for all v ∈ V and b ∈ B we have v*b ∈ U. See [Wedhorn, Def 5.27, p. 36]. -/ def is_bounded (B : set R) : Prop := ∀ U ∈ nhds (0 : R), ∃ V ∈ nhds (0 : R), ∀ v ∈ V, ∀ b ∈ B, v*b ∈ U /--A subset B of a topological ring is bounded if and only if for all neighbourhoods U of 0 ∈ R, there exists a neighbourhood V or 0 such that for all v ∈ V and b ∈ B we have V*B ⊆ U. (Here V*B denotes the set {v * b | v ∈ V, b ∈ B}.) -/ lemma is_bounded_iff (B : set R) : is_bounded B ↔ ∀ U ∈ nhds (0 : R), ∃ V ∈ nhds (0 : R), V * B ⊆ U := forall_congr $ λ U, imp_congr iff.rfl $ exists_congr $ λ V, exists_congr $ λ hV, begin split, { rintros H _ ⟨v, hv, b, hb, rfl⟩, exact H v hv b hb }, { intros H v hv b hb, exact H ⟨v, hv, b, hb, rfl⟩ } end section topological_ring variables [topological_ring R] /--A topological ring with adic topology is bounded.-/ lemma is_adic.is_bounded (h : is_adic R) : is_bounded (univ : set R) := begin intros U hU, rw mem_nhds_sets_iff at hU, rcases hU with ⟨V, hV₁, ⟨hV₂, h0⟩⟩, tactic.unfreeze_local_instances, rcases h with ⟨J, hJ⟩, rw is_ideal_adic_iff at hJ, have H : (∃ (n : ℕ), (J^n).carrier ⊆ V) := begin apply hJ.2, exact mem_nhds_sets hV₂ h0, end, rcases H with ⟨n, hn⟩, use (J^n).carrier, -- the key step split, { exact mem_nhds_sets (hJ.1 n) (J^n).zero_mem }, { rintros a ha b hb, apply hV₁, exact hn ((J^n).mul_mem_right ha), } end section open submodule topological_add_group set_option class.instance_max_depth 58 /--A subset B of a nonarchimedean ring is bounded if and only if for all neighbourhoods U of 0 ∈ R, there exists an open additive subgroup V such that V * B generates a subgroup contained in U. -/ lemma is_bounded_add_subgroup_iff (hR : nonarchimedean R) (B : set R) : is_bounded B ↔ ∀ U ∈ nhds (0:R), ∃ V : open_add_subgroup R, (↑((V : set R) • span ℤ B) : set R) ⊆ U := begin split, { rintros H U hU, cases hR U hU with W hW, rw is_bounded_iff at H, rcases H _ W.mem_nhds_zero with ⟨V', hV', H'⟩, cases hR V' hV' with V hV, use V, refine set.subset.trans _ hW, change ↑(span _ _ * span _ _) ⊆ _, rw [span_mul_span, span_int_eq_add_group_closure, add_group.closure_subset_iff], exact set.subset.trans (set.pointwise_mul_subset_mul hV (set.subset.refl B)) H' }, { intros H, rw is_bounded_iff, intros U hU, cases H U hU with V hV, use [V, V.mem_nhds_zero], refine set.subset.trans _ hV, rintros _ ⟨v, hv, b, hb, rfl⟩, exact mul_mem_mul (subset_span hv) (subset_span hb) } end /--If J is an ideal in a topological ring whose topology is J-adic, then J is topologically nilpotent.-/ lemma is_ideal_adic.topologically_nilpotent {J : ideal R} (h : is-J-adic) : is_topologically_nilpotent_subset (↑J : set R) := begin rw is_ideal_adic_iff at h, intros U hU, cases h.2 U hU with n hn, use n, exact set.subset.trans (J.pow_subset_pow) hn end end end topological_ring namespace is_bounded open topological_add_group /--A subset of a bounded subset is bounded. See [Wedhorn, Rmk 5.28(2)].-/ lemma subset {S₁ S₂ : set R} (h : S₁ ⊆ S₂) (H : is_bounded S₂) : is_bounded S₁ := begin intros U hU, rcases H U hU with ⟨V, hV₁, hV₂⟩, use [V, hV₁], intros v hv b hb, exact hV₂ _ hv _ (h hb), end /--The subgroup generated by a bounded subset of a nonarchimedean ring is bounded. See [Wedhorn, Prop 5.30(1)].-/ lemma add_group.closure [topological_ring R] (hR : nonarchimedean R) (T : set R) (hT : is_bounded T) : is_bounded (add_group.closure T) := begin intros U hU, -- find subgroup U' in U rcases hR U hU with ⟨U', hU'⟩, -- U' still a nhd -- Use boundedness hypo for T with U' to get V rcases hT (U' : set R) U'.mem_nhds_zero with ⟨V, hV, hB⟩, -- find subgroup V' in V rcases hR V hV with ⟨V', hV'⟩, -- V' works for our proof use [V', V'.mem_nhds_zero], intros v hv b hb, -- Suffices to prove we're in U' apply hU', -- Prove the result by induction apply add_group.in_closure.rec_on hb, { intros t ht, exact hB v (hV' hv) t ht }, { rw mul_zero, exact U'.zero_mem }, { intros a Ha Hv, rwa [←neg_mul_comm, neg_mul_eq_neg_mul_symm, is_add_subgroup.neg_mem_iff] }, { intros a b ha hb Ha Hb, rw [mul_add], exact U'.add_mem Ha Hb } end end is_bounded /--An element r of a topological ring is power bounded if the set of all positive powers of r is a bounded subset. See [Wedhorn, Def 5.27].-/ definition is_power_bounded (r : R) : Prop := is_bounded (powers r) /--A subset T of a topological ring is power bounded if the submonoid generated by T is bounded. See [Wedhorn, Def 5.27].-/ definition is_power_bounded_subset (T : set R) : Prop := is_bounded (monoid.closure T) namespace power_bounded open topological_add_group /-- 0 is power bounded.-/ lemma zero : is_power_bounded (0 : R) := λ U hU, ⟨U, begin split, {exact hU}, intros v hv b H, induction H with n H, induction n ; { simp [H.symm, pow_succ, mem_of_nhds hU], try {assumption} } end⟩ /-- 1 is power bounded.-/ lemma one : is_power_bounded (1 : R) := λ U hU, ⟨U, begin split, {exact hU}, intros v hv b H, cases H with n H, simpa [H.symm] end⟩ /-- An element r is power bounded if and only if the singleton {r} is power bounded.-/ lemma singleton (r : R) : is_power_bounded r ↔ is_power_bounded_subset ({r} : set R) := begin unfold is_power_bounded, unfold is_power_bounded_subset, rw monoid.closure_singleton, end /-- A subset of a power bounded set is power bounded. See [Wedhorn, Rmk 5.28(2)].-/ lemma subset {B C : set R} (h : B ⊆ C) (hC : is_power_bounded_subset C) : is_power_bounded_subset B := λ U hU, exists.elim (hC U hU) $ λ V ⟨hV, hC⟩, ⟨V, hV, λ v hv b hb, hC v hv b $ monoid.closure_mono h hb⟩ /--The union of two power bounded sets is power bounded. See [Wedhorn, Rmk 5.28(3)].-/ lemma union {S T : set R} (hS : is_power_bounded_subset S) (hT : is_power_bounded_subset T) : is_power_bounded_subset (S ∪ T) := begin intros U hU, rcases hT U hU with ⟨V, hV, hVU⟩, rcases hS V hV with ⟨W, hW, hWV⟩, use [W, hW], intros v hv b hb, rw monoid.mem_closure_union_iff at hb, rcases hb with ⟨y, hy, z, hz, rfl⟩, rw [←mul_assoc], apply hVU _ _ _ hz, exact hWV _ hv _ hy, end /--The monoid generated by a power bounded subset is power bounded.-/ lemma monoid.closure {T : set R} (hT : is_power_bounded_subset T) : is_power_bounded_subset (monoid.closure T) := begin refine is_bounded.subset _ hT, apply monoid.closure_subset, refl end /--The product of two power bounded elements is power bounded.-/ lemma mul (a b : R) (ha : is_power_bounded a) (hb : is_power_bounded b) : is_power_bounded (a * b) := begin rw singleton at ha hb ⊢, refine subset _ (monoid.closure (union ha hb)), rw [set.singleton_subset_iff, monoid.mem_closure_union_iff], refine ⟨a, _, b, _, rfl⟩; exact monoid.subset_closure (set.mem_singleton _) end section topological_ring variables [topological_ring R] /--The subgroup generated by a power bounded subset of a nonarchimedean ring is power bounded. See [Wedhorn, Prop 5.30(1)].-/ lemma add_group.closure (hR : nonarchimedean R) {T : set R} (hT : is_power_bounded_subset T) : is_power_bounded_subset (add_group.closure T) := begin refine is_bounded.subset _ (is_bounded.add_group.closure hR _ hT), intros a ha, apply monoid.in_closure.rec_on ha, { apply add_group.closure_mono, exact monoid.subset_closure }, { apply add_group.mem_closure, exact monoid.in_closure.one _ }, { intros a b ha hb Ha Hb, show a * b ∈ ring.closure T, exact is_submonoid.mul_mem Ha Hb } end /--The subring generated by a power bounded subset of a nonarchimedean ring is power bounded. See [Wedhorn, Prop 5.30(2)].-/ lemma ring.closure (hR : nonarchimedean R) (T : set R) (hT : is_power_bounded_subset T) : is_power_bounded_subset (ring.closure T) := add_group.closure hR $ monoid.closure hT /--The subring generated by a power bounded subset of a nonarchimedean ring is bounded.-/ lemma ring.closure' (hR : nonarchimedean R) (T : set R) (hT : is_power_bounded_subset T) : is_bounded (_root_.ring.closure T) := is_bounded.subset monoid.subset_closure (ring.closure hR _ hT) /--The sum of two power bounded elements of a nonarchimedean ring is power bounded.-/ lemma add (hR : nonarchimedean R) (a b : R) (ha : is_power_bounded a) (hb : is_power_bounded b) : is_power_bounded (a + b) := begin rw singleton at ha hb ⊢, refine subset _ (add_group.closure hR (union ha hb)), rw set.singleton_subset_iff, apply is_add_submonoid.add_mem; apply add_group.subset_closure; simp end end topological_ring end power_bounded variable (R) /-- The subring of power bounded elements. (Note that this definition makes sense for all R, but this subset is only a subring for certain rings, such as non-archimedean rings.) -/ definition power_bounded_subring := {r : R | is_power_bounded r} variable {R} namespace power_bounded_subring open topological_add_group /--The coercion from the power bounded subring to the ambient ring.-/ instance : has_coe (power_bounded_subring R) R := ⟨subtype.val⟩ lemma zero_mem : (0 : R) ∈ power_bounded_subring R := power_bounded.zero lemma one_mem : (1 : R) ∈ power_bounded_subring R := power_bounded.one lemma mul_mem : ∀ ⦃a b : R⦄, a ∈ power_bounded_subring R → b ∈ power_bounded_subring R → a * b ∈ power_bounded_subring R := power_bounded.mul /--The subset of power bounded elements of a topological ring is a submonoid.-/ instance : is_submonoid (power_bounded_subring R) := { one_mem := one_mem, mul_mem := mul_mem } section topological_ring variables [topological_ring R] lemma add_mem (h : nonarchimedean R) ⦃a b : R⦄ (ha : a ∈ power_bounded_subring R) (hb : b ∈ power_bounded_subring R) : a + b ∈ power_bounded_subring R := power_bounded.add h a b ha hb lemma neg_mem : ∀ ⦃a : R⦄, a ∈ power_bounded_subring R → -a ∈ power_bounded_subring R := λ a ha U hU, begin let Usymm := U ∩ {u | -u ∈ U}, have hUsymm : Usymm ∈ (nhds (0 : R)) := begin apply filter.inter_mem_sets hU, apply continuous.tendsto (topological_add_group.continuous_neg R) 0, simpa end, rcases ha Usymm hUsymm with ⟨V, ⟨V_nhd, hV⟩⟩, use [V, V_nhd], rintros v hv _ ⟨n, rfl⟩, rw show v * (-a)^n = ((-1)^n * v) * a^n, by { rw [neg_eq_neg_one_mul, mul_pow], ring }, suffices H : (-1)^n * v * a^n ∈ Usymm, { exact H.left }, have H := hV v hv (a^n) ⟨n, rfl⟩, cases (@neg_one_pow_eq_or R _ n) with h h; simpa [h, H.1, H.2] using H end /--The subset of power bounded elements of a nonarchimedean ring is a subgroup.-/ instance (hR : nonarchimedean R) : is_add_subgroup (power_bounded_subring R) := { zero_mem := zero_mem, add_mem := add_mem hR, neg_mem := neg_mem } /--The subset of power bounded elements of a nonarchimedean ring is a subring.-/ instance (hR : nonarchimedean R) : is_subring (power_bounded_subring R) := { ..power_bounded_subring.is_submonoid, ..power_bounded_subring.is_add_subgroup hR } end topological_ring variable (R) /--A topological ring is uniform if the subset of power bounded elements is bounded.-/ definition is_uniform : Prop := is_bounded (power_bounded_subring R) end power_bounded_subring