Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
11.6 kB
import data.padics
import for_mathlib.ideal_operations
import for_mathlib.normed_spaces
import for_mathlib.nnreal
import for_mathlib.padics
import adic_space
/-!
# The p-adics form a Huber ring
In this file we show that ℤ_[p] and ℚ_[p] are Huber rings.
They are the fundamental examples of Huber rings.
We also show that (ℚ_[p], ℤ_[p]) is a Huber pair,
and that its adic spectrum is a singleton,
consisting of the standard p-adic valuation on ℚ_[p].
-/
noncomputable theory
open_locale classical
local postfix `⁺` : 66 := λ A : Huber_pair, A.plus
open local_ring
local attribute [instance] padic_int.algebra
variables (p : ℕ) [nat.prime p]
namespace padic_int
/-- The topology on ℤ_[p] is adic with respect to the maximal ideal.-/
lemma is_adic : is_ideal_adic (nonunits_ideal ℤ_[p]) :=
begin
rw is_ideal_adic_iff,
split,
{ intro n,
show is_open (↑(_ : ideal ℤ_[p]) : set ℤ_[p]),
rw power_nonunits_ideal_eq_norm_le_pow,
simp only [norm_le_pow_iff_norm_lt_pow_succ],
rw ← ball_0_eq,
exact metric.is_open_ball },
{ intros s hs,
rcases metric.mem_nhds_iff.mp hs with ⟨ε, ε_pos, hε⟩,
obtain ⟨n, hn⟩ : ∃ n : ℕ, (p : ℝ)^-(n:ℤ) < ε,
{ have hp : (1:ℝ) < p := by exact_mod_cast nat.prime.one_lt ‹_›,
obtain ⟨n, hn⟩ : ∃ (n:ℕ), ε⁻¹ < p^n := pow_unbounded_of_one_lt ε⁻¹ hp,
use n,
have hp' : (0:ℝ) < p^n,
{ rw ← fpow_of_nat, apply fpow_pos_of_pos, exact_mod_cast nat.prime.pos ‹_› },
rw [inv_lt ε_pos hp', inv_eq_one_div] at hn,
rwa [fpow_neg, fpow_of_nat], },
use n, show (↑(_ : ideal ℤ_[p]) : set ℤ_[p]) ⊆ _,
refine set.subset.trans _ hε,
rw power_nonunits_ideal_eq_norm_le_pow,
rw ball_0_eq,
intros x hx,
rw set.mem_set_of_eq at *,
exact lt_of_le_of_lt hx hn }
end
section
open polynomial
lemma is_integrally_closed : is_integrally_closed ℤ_[p] ℚ_[p] :=
{ inj := subtype.val_injective,
closed :=
begin
rintros x ⟨f, f_monic, hf⟩,
have bleh : eval₂ (algebra_map ℚ_[p]) x ((finset.range (nat_degree f)).sum (λ (i : ℕ), C (coeff f i) * X^i)) =
((finset.range (nat_degree f)).sum (λ (i : ℕ), eval₂ (algebra_map ℚ_[p]) x $ C (coeff f i) * X^i)),
{ exact (finset.sum_hom _ _).symm },
erw subtype.val_range,
show ∥x∥ ≤ 1,
rw [f_monic.as_sum, aeval_def, eval₂_add, eval₂_pow, eval₂_X] at hf,
rw [bleh] at hf,
replace hf := congr_arg (@has_norm.norm ℚ_[p] _) hf,
contrapose! hf with H,
apply ne_of_gt,
rw [norm_zero, padic_norm_e.add_eq_max_of_ne],
{ apply lt_of_lt_of_le _ (le_max_left _ _),
rw [← fpow_of_nat, normed_field.norm_fpow],
apply fpow_pos_of_pos,
exact lt_trans zero_lt_one H, },
{ apply ne_of_gt,
apply lt_of_le_of_lt (padic.norm_sum _ _),
rw finset.fold_max_lt,
split,
{ rw [← fpow_of_nat, normed_field.norm_fpow], apply fpow_pos_of_pos, exact lt_trans zero_lt_one H },
{ intros i hi,
suffices : ∥algebra_map ℚ_[p] (coeff f i)∥ * ∥x∥ ^ i < ∥x∥ ^ nat_degree f,
by simpa [eval₂_pow],
refine lt_of_le_of_lt (mul_le_of_le_one_left _ _ : _ ≤ ∥x∥ ^ i) _,
{ rw [← fpow_of_nat], apply fpow_nonneg_of_nonneg, exact norm_nonneg _ },
{ exact (coeff f i).property },
{ rw [← fpow_of_nat, ← fpow_of_nat, (fpow_strict_mono H).lt_iff_lt],
rw finset.mem_range at hi, exact_mod_cast hi, } } }
end }
end
/-- The p-adic integers (ℤ_[p])form a Huber ring.-/
instance : Huber_ring ℤ_[p] :=
{ pod := ⟨ℤ_[p], infer_instance, infer_instance, by apply_instance,
⟨{ emb := open_embedding_id,
J := (nonunits_ideal _),
fin := nonunits_ideal_fg p,
top := is_adic p,
.. algebra.id ℤ_[p] }⟩⟩ }
end padic_int
section
--move this
variables {α : Type*} {β : Type*} [topological_space α] [topological_space β]
lemma is_open_map.image_nhds {f : α → β} (hf : is_open_map f)
{x : α} {U : set α} (hU : U ∈ nhds x) : f '' U ∈ nhds (f x) :=
begin
apply (is_open_map_iff_nhds_le).mp hf x,
change f ⁻¹' (f '' U) ∈ nhds x,
filter_upwards [hU],
exact set.subset_preimage_image f U
end
end
open local_ring set padic_int
/-- The p-adic numbers (ℚ_[p]) form a Huber ring.-/
instance padic.Huber_ring : Huber_ring ℚ_[p] :=
{ pod := ⟨ℤ_[p], infer_instance, infer_instance, by apply_instance,
⟨{ emb := coe_open_embedding,
J := (nonunits_ideal _),
fin := nonunits_ideal_fg p,
top := is_adic p,
.. padic_int.algebra }⟩⟩ }
/-- The p-adic numbers form a Huber pair (with the p-adic integers as power bounded subring).-/
@[reducible] def padic.Huber_pair : Huber_pair :=
{ plus := ℤ_[p],
carrier := ℚ_[p],
intel :=
{ is_power_bounded :=
begin
-- this entire goal ought to follow from some is_bounded.map lemma
-- but we didn't prove that.
suffices : is_bounded {x : ℚ_[p] | ∥x∥ ≤ 1},
{ rintro _ ⟨x, rfl⟩,
show is_power_bounded (x:ℚ_[p]),
refine is_bounded.subset _ this,
rintro y ⟨n, rfl⟩,
show ∥(x:ℚ_[p])^n∥ ≤ 1,
rw normed_field.norm_pow,
exact pow_le_one _ (norm_nonneg _) x.property, },
have bnd := is_adic.is_bounded ⟨_, is_adic p⟩,
intros U hU,
rcases bnd ((coe : ℤ_[p] → ℚ_[p]) ⁻¹' U) _ with ⟨V, hV, H⟩,
{ use [(coe : ℤ_[p] → ℚ_[p]) '' V,
coe_open_embedding.is_open_map.image_nhds hV],
rintros _ ⟨v, v_in, rfl⟩ b hb,
specialize H v v_in ⟨b, hb⟩ (mem_univ _),
rwa [mem_preimage, coe_mul] at H },
{ rw ← coe_zero at hU,
exact continuous_coe.continuous_at hU }
end
.. coe_open_embedding,
.. is_integrally_closed p } }
.
-- Valuations take values in a linearly ordered monoid with a minimal element 0,
-- whereas norms in mathlib are defined to take values in ℝ.
-- This is a repackaging of the p-adic norm as a valuation with values in the non-negative reals.
/-- The standard p-adic valuation. -/
def padic.bundled_valuation : valuation ℚ_[p] nnreal :=
{ to_fun := λ x, ⟨∥x∥, norm_nonneg _⟩,
map_zero' := subtype.val_injective norm_zero,
map_one' := subtype.val_injective normed_field.norm_one,
map_mul' := λ x y, subtype.val_injective $ normed_field.norm_mul _ _,
map_add' := λ x y,
begin
apply le_trans (padic_norm_e.nonarchimedean x y),
rw max_le_iff,
simp [nnreal.coe_max],
split,
{ apply le_trans (le_max_left ∥x∥ ∥y∥),
apply le_of_eq, symmetry, convert nnreal.coe_max _ _,
delta classical.DLO nnreal.decidable_linear_order real.decidable_linear_order,
congr, },
{ apply le_trans (le_max_right ∥x∥ ∥y∥),
apply le_of_eq, symmetry, convert nnreal.coe_max _ _,
delta classical.DLO nnreal.decidable_linear_order real.decidable_linear_order,
congr, },
end }
namespace valuation
variables {R : Type*} [comm_ring R]
variables {K : Type*} [discrete_field K]
variables {L : Type*} [discrete_field L] [topological_space L]
variables {Γ₀ : Type*} [linear_ordered_comm_group_with_zero Γ₀]
variables {Γ'₀ : Type*} [linear_ordered_comm_group_with_zero Γ'₀]
--move this
-- This is a hack, to avoid an fpow diamond.
lemma map_fpow_eq_one_iff {v : valuation K Γ₀} {x : K} (n : ℤ) (hn : n ≠ 0) :
v (x^n) = 1 ↔ v x = 1 :=
begin
have helper : ∀ x (n : ℕ), n ≠ 0 → (v (x^n) = 1 ↔ v x = 1),
{ clear hn n x, intros x n hn,
erw [is_monoid_hom.map_pow v.to_monoid_hom],
cases n, { contradiction, },
show (v x)^(n+1) = 1 ↔ v x = 1,
by_cases hx : x = 0, { rw [hx, v.map_zero, pow_succ, zero_mul], },
change x ≠ 0 at hx,
rw ← v.ne_zero_iff at hx,
let u : units Γ₀ := group_with_zero.mk₀ _ hx,
suffices : u^(n+1) = 1 ↔ u = 1,
{ rwa [units.ext_iff, units.ext_iff, units.coe_pow] at this, },
split; intro h,
{ exact linear_ordered_structure.eq_one_of_pow_eq_one (nat.succ_ne_zero _) h },
{ rw [h, one_pow], } },
by_cases hn' : 0 ≤ n,
{ lift n tousing hn', rw [fpow_of_nat], norm_cast at hn, solve_by_elim },
{ push_neg at hn', rw ← neg_pos at hn',
lift -n to ℕ using le_of_lt hn' with m hm,
have hm' : m ≠ 0, { apply ne_of_gt, exact_mod_cast hn' },
rw [← neg_neg n, ← mul_neg_one, fpow_mul, fpow_inv, v.map_inv, ← inv_one',
inv_inj'', ← hm, inv_one'], solve_by_elim }
end
end valuation
--move this
lemma padic.not_discrete : ¬ discrete_topology ℚ_[p] :=
nondiscrete_normed_field.nondiscrete
--move this
lemma padic_int.not_discrete : ¬ discrete_topology ℤ_[p] :=
begin
assume h,
replace h := topological_add_group.discrete_iff_open_zero.mp h,
apply padic.not_discrete p,
refine topological_add_group.discrete_iff_open_zero.mpr _,
have := coe_open_embedding.is_open_map _ h,
rw image_singleton at this,
exact_mod_cast this
end
/-- The adic spectrum Spa(ℚ_p, ℤ_p) is inhabited. -/
def padic.Spa_inhabited : inhabited (Spa $ padic.Huber_pair p) :=
{ default := ⟨Spv.mk (padic.bundled_valuation p),
begin
refine mk_mem_spa.mpr _,
split,
{ rw valuation.is_continuous_iff,
rintro y,
change is_open {x : ℚ_[p] | ∥x∥ < ∥y∥ },
rw ← ball_0_eq,
exact metric.is_open_ball },
{ intro x, change ℤ_[p] at x, exact x.property },
end⟩ }
/-- The adic spectrum Spa(ℚ_p, ℤ_p) is a singleton:
the only element is the standard p-adic valuation. -/
def padic.Spa_unique : unique (Spa $ padic.Huber_pair p) :=
{ uniq :=
begin
intros v,
change spa (padic.Huber_pair p) at v,
ext,
refine valuation.is_equiv.trans _ (Spv.out_mk _).symm,
apply valuation.is_equiv_of_val_le_one,
intros x, change ℚ_[p] at x,
split; intro h,
{ by_cases hx : ∃ y : ℤ_[p], x = y,
{ rcases hx with ⟨x, rfl⟩, exact x.property },
{ push_neg at hx,
contrapose! h,
obtain ⟨y, hy⟩ : ∃ y : ℤ_[p], x⁻¹ = y,
{ refine ⟨⟨x⁻¹, _⟩, rfl⟩, rw normed_field.norm_inv, apply inv_le_one, apply le_of_lt, exact h },
refine (linear_ordered_structure.inv_lt_inv _ _).mp _,
{ rw valuation.ne_zero_iff, contrapose! hx, use [0, hx] },
{ exact one_ne_zero },
{ rw [inv_one', ← valuation.map_inv, hy],
refine lt_of_le_of_ne (v.map_plus y) _,
assume H,
apply padic.not_discrete p,
apply (valuation.is_continuous_iff_discrete_of_is_trivial _ _).mp v.is_continuous,
rw valuation.is_trivial_iff_val_le_one,
intro z,
by_cases hx' : x = 0, { contrapose! h, simp [hx'], },
rcases padic.exists_repr x hx' with ⟨u, m, rfl⟩, clear hx',
by_cases hz : z = 0, { simp [hz], },
rcases padic.exists_repr z hz with ⟨v, n, rfl⟩, clear hz,
erw [valuation.map_mul, spa.map_unit, one_mul],
by_cases hn : n = 0, { erw [hn, fpow_zero, valuation.map_one], },
erw [← hy, valuation.map_inv, valuation.map_mul, spa.map_unit,
one_mul, ← inv_one', inv_inj'',
valuation.map_fpow_eq_one_iff, ← valuation.map_fpow_eq_one_iff n hn] at H,
{ exact le_of_eq H, },
contrapose! h,
rw [h, fpow_zero, mul_one, ← nnreal.coe_le], apply le_of_eq,
erw ← padic_int.is_unit_iff, exact is_unit_unit _, } } },
{ exact spa.map_plus v ⟨x, h⟩, }
end,
.. padic.Spa_inhabited p }