Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import data.padics | |
import for_mathlib.ideal_operations | |
import for_mathlib.normed_spaces | |
import for_mathlib.nnreal | |
import for_mathlib.padics | |
import adic_space | |
/-! | |
# The p-adics form a Huber ring | |
In this file we show that ℤ_[p] and ℚ_[p] are Huber rings. | |
They are the fundamental examples of Huber rings. | |
We also show that (ℚ_[p], ℤ_[p]) is a Huber pair, | |
and that its adic spectrum is a singleton, | |
consisting of the standard p-adic valuation on ℚ_[p]. | |
-/ | |
noncomputable theory | |
open_locale classical | |
local postfix `⁺` : 66 := λ A : Huber_pair, A.plus | |
open local_ring | |
local attribute [instance] padic_int.algebra | |
variables (p : ℕ) [nat.prime p] | |
namespace padic_int | |
/-- The topology on ℤ_[p] is adic with respect to the maximal ideal.-/ | |
lemma is_adic : is_ideal_adic (nonunits_ideal ℤ_[p]) := | |
begin | |
rw is_ideal_adic_iff, | |
split, | |
{ intro n, | |
show is_open (↑(_ : ideal ℤ_[p]) : set ℤ_[p]), | |
rw power_nonunits_ideal_eq_norm_le_pow, | |
simp only [norm_le_pow_iff_norm_lt_pow_succ], | |
rw ← ball_0_eq, | |
exact metric.is_open_ball }, | |
{ intros s hs, | |
rcases metric.mem_nhds_iff.mp hs with ⟨ε, ε_pos, hε⟩, | |
obtain ⟨n, hn⟩ : ∃ n : ℕ, (p : ℝ)^-(n:ℤ) < ε, | |
{ have hp : (1:ℝ) < p := by exact_mod_cast nat.prime.one_lt ‹_›, | |
obtain ⟨n, hn⟩ : ∃ (n:ℕ), ε⁻¹ < p^n := pow_unbounded_of_one_lt ε⁻¹ hp, | |
use n, | |
have hp' : (0:ℝ) < p^n, | |
{ rw ← fpow_of_nat, apply fpow_pos_of_pos, exact_mod_cast nat.prime.pos ‹_› }, | |
rw [inv_lt ε_pos hp', inv_eq_one_div] at hn, | |
rwa [fpow_neg, fpow_of_nat], }, | |
use n, show (↑(_ : ideal ℤ_[p]) : set ℤ_[p]) ⊆ _, | |
refine set.subset.trans _ hε, | |
rw power_nonunits_ideal_eq_norm_le_pow, | |
rw ball_0_eq, | |
intros x hx, | |
rw set.mem_set_of_eq at *, | |
exact lt_of_le_of_lt hx hn } | |
end | |
section | |
open polynomial | |
lemma is_integrally_closed : is_integrally_closed ℤ_[p] ℚ_[p] := | |
{ inj := subtype.val_injective, | |
closed := | |
begin | |
rintros x ⟨f, f_monic, hf⟩, | |
have bleh : eval₂ (algebra_map ℚ_[p]) x ((finset.range (nat_degree f)).sum (λ (i : ℕ), C (coeff f i) * X^i)) = | |
((finset.range (nat_degree f)).sum (λ (i : ℕ), eval₂ (algebra_map ℚ_[p]) x $ C (coeff f i) * X^i)), | |
{ exact (finset.sum_hom _ _).symm }, | |
erw subtype.val_range, | |
show ∥x∥ ≤ 1, | |
rw [f_monic.as_sum, aeval_def, eval₂_add, eval₂_pow, eval₂_X] at hf, | |
rw [bleh] at hf, | |
replace hf := congr_arg (@has_norm.norm ℚ_[p] _) hf, | |
contrapose! hf with H, | |
apply ne_of_gt, | |
rw [norm_zero, padic_norm_e.add_eq_max_of_ne], | |
{ apply lt_of_lt_of_le _ (le_max_left _ _), | |
rw [← fpow_of_nat, normed_field.norm_fpow], | |
apply fpow_pos_of_pos, | |
exact lt_trans zero_lt_one H, }, | |
{ apply ne_of_gt, | |
apply lt_of_le_of_lt (padic.norm_sum _ _), | |
rw finset.fold_max_lt, | |
split, | |
{ rw [← fpow_of_nat, normed_field.norm_fpow], apply fpow_pos_of_pos, exact lt_trans zero_lt_one H }, | |
{ intros i hi, | |
suffices : ∥algebra_map ℚ_[p] (coeff f i)∥ * ∥x∥ ^ i < ∥x∥ ^ nat_degree f, | |
by simpa [eval₂_pow], | |
refine lt_of_le_of_lt (mul_le_of_le_one_left _ _ : _ ≤ ∥x∥ ^ i) _, | |
{ rw [← fpow_of_nat], apply fpow_nonneg_of_nonneg, exact norm_nonneg _ }, | |
{ exact (coeff f i).property }, | |
{ rw [← fpow_of_nat, ← fpow_of_nat, (fpow_strict_mono H).lt_iff_lt], | |
rw finset.mem_range at hi, exact_mod_cast hi, } } } | |
end } | |
end | |
/-- The p-adic integers (ℤ_[p])form a Huber ring.-/ | |
instance : Huber_ring ℤ_[p] := | |
{ pod := ⟨ℤ_[p], infer_instance, infer_instance, by apply_instance, | |
⟨{ emb := open_embedding_id, | |
J := (nonunits_ideal _), | |
fin := nonunits_ideal_fg p, | |
top := is_adic p, | |
.. algebra.id ℤ_[p] }⟩⟩ } | |
end padic_int | |
section | |
--move this | |
variables {α : Type*} {β : Type*} [topological_space α] [topological_space β] | |
lemma is_open_map.image_nhds {f : α → β} (hf : is_open_map f) | |
{x : α} {U : set α} (hU : U ∈ nhds x) : f '' U ∈ nhds (f x) := | |
begin | |
apply (is_open_map_iff_nhds_le).mp hf x, | |
change f ⁻¹' (f '' U) ∈ nhds x, | |
filter_upwards [hU], | |
exact set.subset_preimage_image f U | |
end | |
end | |
open local_ring set padic_int | |
/-- The p-adic numbers (ℚ_[p]) form a Huber ring.-/ | |
instance padic.Huber_ring : Huber_ring ℚ_[p] := | |
{ pod := ⟨ℤ_[p], infer_instance, infer_instance, by apply_instance, | |
⟨{ emb := coe_open_embedding, | |
J := (nonunits_ideal _), | |
fin := nonunits_ideal_fg p, | |
top := is_adic p, | |
.. padic_int.algebra }⟩⟩ } | |
/-- The p-adic numbers form a Huber pair (with the p-adic integers as power bounded subring).-/ | |
@[reducible] def padic.Huber_pair : Huber_pair := | |
{ plus := ℤ_[p], | |
carrier := ℚ_[p], | |
intel := | |
{ is_power_bounded := | |
begin | |
-- this entire goal ought to follow from some is_bounded.map lemma | |
-- but we didn't prove that. | |
suffices : is_bounded {x : ℚ_[p] | ∥x∥ ≤ 1}, | |
{ rintro _ ⟨x, rfl⟩, | |
show is_power_bounded (x:ℚ_[p]), | |
refine is_bounded.subset _ this, | |
rintro y ⟨n, rfl⟩, | |
show ∥(x:ℚ_[p])^n∥ ≤ 1, | |
rw normed_field.norm_pow, | |
exact pow_le_one _ (norm_nonneg _) x.property, }, | |
have bnd := is_adic.is_bounded ⟨_, is_adic p⟩, | |
intros U hU, | |
rcases bnd ((coe : ℤ_[p] → ℚ_[p]) ⁻¹' U) _ with ⟨V, hV, H⟩, | |
{ use [(coe : ℤ_[p] → ℚ_[p]) '' V, | |
coe_open_embedding.is_open_map.image_nhds hV], | |
rintros _ ⟨v, v_in, rfl⟩ b hb, | |
specialize H v v_in ⟨b, hb⟩ (mem_univ _), | |
rwa [mem_preimage, coe_mul] at H }, | |
{ rw ← coe_zero at hU, | |
exact continuous_coe.continuous_at hU } | |
end | |
.. coe_open_embedding, | |
.. is_integrally_closed p } } | |
. | |
-- Valuations take values in a linearly ordered monoid with a minimal element 0, | |
-- whereas norms in mathlib are defined to take values in ℝ. | |
-- This is a repackaging of the p-adic norm as a valuation with values in the non-negative reals. | |
/-- The standard p-adic valuation. -/ | |
def padic.bundled_valuation : valuation ℚ_[p] nnreal := | |
{ to_fun := λ x, ⟨∥x∥, norm_nonneg _⟩, | |
map_zero' := subtype.val_injective norm_zero, | |
map_one' := subtype.val_injective normed_field.norm_one, | |
map_mul' := λ x y, subtype.val_injective $ normed_field.norm_mul _ _, | |
map_add' := λ x y, | |
begin | |
apply le_trans (padic_norm_e.nonarchimedean x y), | |
rw max_le_iff, | |
simp [nnreal.coe_max], | |
split, | |
{ apply le_trans (le_max_left ∥x∥ ∥y∥), | |
apply le_of_eq, symmetry, convert nnreal.coe_max _ _, | |
delta classical.DLO nnreal.decidable_linear_order real.decidable_linear_order, | |
congr, }, | |
{ apply le_trans (le_max_right ∥x∥ ∥y∥), | |
apply le_of_eq, symmetry, convert nnreal.coe_max _ _, | |
delta classical.DLO nnreal.decidable_linear_order real.decidable_linear_order, | |
congr, }, | |
end } | |
namespace valuation | |
variables {R : Type*} [comm_ring R] | |
variables {K : Type*} [discrete_field K] | |
variables {L : Type*} [discrete_field L] [topological_space L] | |
variables {Γ₀ : Type*} [linear_ordered_comm_group_with_zero Γ₀] | |
variables {Γ'₀ : Type*} [linear_ordered_comm_group_with_zero Γ'₀] | |
--move this | |
-- This is a hack, to avoid an fpow diamond. | |
lemma map_fpow_eq_one_iff {v : valuation K Γ₀} {x : K} (n : ℤ) (hn : n ≠ 0) : | |
v (x^n) = 1 ↔ v x = 1 := | |
begin | |
have helper : ∀ x (n : ℕ), n ≠ 0 → (v (x^n) = 1 ↔ v x = 1), | |
{ clear hn n x, intros x n hn, | |
erw [is_monoid_hom.map_pow v.to_monoid_hom], | |
cases n, { contradiction, }, | |
show (v x)^(n+1) = 1 ↔ v x = 1, | |
by_cases hx : x = 0, { rw [hx, v.map_zero, pow_succ, zero_mul], }, | |
change x ≠ 0 at hx, | |
rw ← v.ne_zero_iff at hx, | |
let u : units Γ₀ := group_with_zero.mk₀ _ hx, | |
suffices : u^(n+1) = 1 ↔ u = 1, | |
{ rwa [units.ext_iff, units.ext_iff, units.coe_pow] at this, }, | |
split; intro h, | |
{ exact linear_ordered_structure.eq_one_of_pow_eq_one (nat.succ_ne_zero _) h }, | |
{ rw [h, one_pow], } }, | |
by_cases hn' : 0 ≤ n, | |
{ lift n to ℕ using hn', rw [fpow_of_nat], norm_cast at hn, solve_by_elim }, | |
{ push_neg at hn', rw ← neg_pos at hn', | |
lift -n to ℕ using le_of_lt hn' with m hm, | |
have hm' : m ≠ 0, { apply ne_of_gt, exact_mod_cast hn' }, | |
rw [← neg_neg n, ← mul_neg_one, fpow_mul, fpow_inv, v.map_inv, ← inv_one', | |
inv_inj'', ← hm, inv_one'], solve_by_elim } | |
end | |
end valuation | |
--move this | |
lemma padic.not_discrete : ¬ discrete_topology ℚ_[p] := | |
nondiscrete_normed_field.nondiscrete | |
--move this | |
lemma padic_int.not_discrete : ¬ discrete_topology ℤ_[p] := | |
begin | |
assume h, | |
replace h := topological_add_group.discrete_iff_open_zero.mp h, | |
apply padic.not_discrete p, | |
refine topological_add_group.discrete_iff_open_zero.mpr _, | |
have := coe_open_embedding.is_open_map _ h, | |
rw image_singleton at this, | |
exact_mod_cast this | |
end | |
/-- The adic spectrum Spa(ℚ_p, ℤ_p) is inhabited. -/ | |
def padic.Spa_inhabited : inhabited (Spa $ padic.Huber_pair p) := | |
{ default := ⟨Spv.mk (padic.bundled_valuation p), | |
begin | |
refine mk_mem_spa.mpr _, | |
split, | |
{ rw valuation.is_continuous_iff, | |
rintro y, | |
change is_open {x : ℚ_[p] | ∥x∥ < ∥y∥ }, | |
rw ← ball_0_eq, | |
exact metric.is_open_ball }, | |
{ intro x, change ℤ_[p] at x, exact x.property }, | |
end⟩ } | |
/-- The adic spectrum Spa(ℚ_p, ℤ_p) is a singleton: | |
the only element is the standard p-adic valuation. -/ | |
def padic.Spa_unique : unique (Spa $ padic.Huber_pair p) := | |
{ uniq := | |
begin | |
intros v, | |
change spa (padic.Huber_pair p) at v, | |
ext, | |
refine valuation.is_equiv.trans _ (Spv.out_mk _).symm, | |
apply valuation.is_equiv_of_val_le_one, | |
intros x, change ℚ_[p] at x, | |
split; intro h, | |
{ by_cases hx : ∃ y : ℤ_[p], x = y, | |
{ rcases hx with ⟨x, rfl⟩, exact x.property }, | |
{ push_neg at hx, | |
contrapose! h, | |
obtain ⟨y, hy⟩ : ∃ y : ℤ_[p], x⁻¹ = y, | |
{ refine ⟨⟨x⁻¹, _⟩, rfl⟩, rw normed_field.norm_inv, apply inv_le_one, apply le_of_lt, exact h }, | |
refine (linear_ordered_structure.inv_lt_inv _ _).mp _, | |
{ rw valuation.ne_zero_iff, contrapose! hx, use [0, hx] }, | |
{ exact one_ne_zero }, | |
{ rw [inv_one', ← valuation.map_inv, hy], | |
refine lt_of_le_of_ne (v.map_plus y) _, | |
assume H, | |
apply padic.not_discrete p, | |
apply (valuation.is_continuous_iff_discrete_of_is_trivial _ _).mp v.is_continuous, | |
rw valuation.is_trivial_iff_val_le_one, | |
intro z, | |
by_cases hx' : x = 0, { contrapose! h, simp [hx'], }, | |
rcases padic.exists_repr x hx' with ⟨u, m, rfl⟩, clear hx', | |
by_cases hz : z = 0, { simp [hz], }, | |
rcases padic.exists_repr z hz with ⟨v, n, rfl⟩, clear hz, | |
erw [valuation.map_mul, spa.map_unit, one_mul], | |
by_cases hn : n = 0, { erw [hn, fpow_zero, valuation.map_one], }, | |
erw [← hy, valuation.map_inv, valuation.map_mul, spa.map_unit, | |
one_mul, ← inv_one', inv_inj'', | |
valuation.map_fpow_eq_one_iff, ← valuation.map_fpow_eq_one_iff n hn] at H, | |
{ exact le_of_eq H, }, | |
contrapose! h, | |
rw [h, fpow_zero, mul_one, ← nnreal.coe_le], apply le_of_eq, | |
erw ← padic_int.is_unit_iff, exact is_unit_unit _, } } }, | |
{ exact spa.map_plus v ⟨x, h⟩, } | |
end, | |
.. padic.Spa_inhabited p } | |