Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import Spa.localization_Huber | |
import Spa.presheaf | |
import sheaves.stalk_of_rings | |
/-! | |
# The valuation on the stalk | |
We define the valuations on the stalks of the structure presheaf of the adic spectrum. | |
The strategy is as follows: | |
1. Recall that a point in the adic spectrum is an equivalence class of valuations. | |
We pick a representative v. This valuation has a valuation field | |
that does not depend on the choice of representative (up to isomorphism). | |
2. Define a map from the stalk above [v] to K_v-hat, the completion of the valuation field of v. | |
3. Extend v to the completion of its valuation field. | |
4. Pullback v along the map constructed in 2. | |
The hard parts of this outline are #2 and #3, | |
however #3 has been dealt with in valuation/valuation_field_completion.lean. | |
That leaves us with #2. | |
The stalk of a presheaf F at a point x consists of “germs”: | |
pairs (U,s) of an open neighbourhood U of x and a section s in F(U), | |
modulo an equivalence relation. | |
To define a map out of the stalk, we can use a recursor, | |
and define the map on the sections s in F(U) for open neigbourhoods U of x. | |
But we have to check a compatibility condition, and this takes some effort. | |
Let us translate this to the context of the structure presheaf of the adic spectrum. | |
The sections above a rational open subset R(T/s) are: | |
rat_open_data_completion r := A<T/s> | |
* We define a map A<T/s> → K_v-hat. | |
* We show that this map satisfies the property that if v in D(T1,s1) ⊂ D(T2,s2) then | |
the maps A<Ti/si> → K_v-hat commute with the restriction map. | |
* We then show that we can get compatible maps O_X(U) → K_v-hat for an arbitrary open with v ∈ U. | |
Once this is in place, we can apply the recursor, to get the desired map from #2. | |
-/ | |
open_locale classical | |
open topological_space valuation Spv spa uniform_space | |
namespace spa | |
variable {A : Huber_pair} | |
local attribute [instance] valued.uniform_space | |
namespace rational_open_data | |
/-- The natural map from A<T/s> to the completion of the valuation field of a valuation v | |
contained in R(T/s). -/ | |
noncomputable def to_complete_valuation_field (r : rational_open_data A) {v : spa A} | |
(hv : v ∈ r.open_set) : | |
rat_open_data_completion r → completion (valuation_field (Spv.out v.1)) := | |
completion.map (Huber_pair.rational_open_data.to_valuation_field hv) | |
variables {r r1 r2 : rational_open_data A} {v : spa A} (hv : v ∈ r.open_set) | |
/-- The natural map from A<T/s> to the completion of the valuation field of a valuation v | |
contained in R(T/s) is a ring homomorphism. -/ | |
instance to_complete_valuation_field_is_ring_hom : | |
is_ring_hom (r.to_complete_valuation_field hv) := | |
completion.is_ring_hom_map (Huber_pair.rational_open_data.to_valuation_field_cts hv) | |
-- Next we need to show that the completed maps to K_v-hat | |
-- all commute with the restriction maps. | |
/-- The maps from rationals opens to completions commute with allowable restriction maps. -/ | |
theorem to_valuation_field_commutes (hv1 : v ∈ r1.open_set) (hv2 : v ∈ r2.open_set) (h : r1 ≤ r2) : | |
(r2.to_complete_valuation_field hv2) ∘ (rat_open_data_completion.restriction h) = | |
(r1.to_complete_valuation_field hv1) := | |
begin | |
delta to_complete_valuation_field, | |
delta rat_open_data_completion.restriction, | |
have uc1 : uniform_continuous (rational_open_data.localization_map h), | |
from rational_open_data.localization_map_is_uniform_continuous h, | |
have uc2 : uniform_continuous (Huber_pair.rational_open_data.to_valuation_field hv2), | |
from uniform_continuous_of_continuous (Huber_pair.rational_open_data.to_valuation_field_cts hv2), | |
rw [Huber_pair.rational_open_data.to_valuation_field_commutes hv1 hv2 h, completion.map_comp uc2 uc1] | |
end | |
end rational_open_data | |
-- Now we need to show that for any 𝒪_X(U) with v in U we have a map to K_v-hat. | |
-- First let's write a noncomputable function which gets a basis element. | |
section | |
variables {v : spa A} {U : opens (spa A)} | |
lemma exists_rational_open_subset (hv : v ∈ U) : | |
∃ r : rational_open_data_subsets U, v ∈ r.1.open_set := | |
begin | |
suffices : U.1 ∈ nhds v, | |
{ rw mem_nhds_of_is_topological_basis (rational_basis.is_basis) at this, | |
rcases this with ⟨_, ⟨r, rfl⟩, hv, hr⟩, | |
use ⟨r, hr⟩, | |
exact hv, }, | |
apply mem_nhds_sets U.2 hv, | |
end | |
/-- Given an open set U and a valuation v, this function chooses a random rational open subset | |
containing v and contained in U. -/ | |
noncomputable def rational_open_subset_nhd (hv : v ∈ U) : | |
rational_open_data_subsets U := | |
classical.some $ spa.exists_rational_open_subset hv | |
lemma mem_rational_open_subset_nhd (hv : v ∈ U) : | |
v ∈ (spa.rational_open_subset_nhd hv).1.open_set := | |
classical.some_spec $ spa.exists_rational_open_subset hv | |
end | |
namespace presheaf | |
open rational_open_data | |
variables {v : spa A} {U : opens (spa A)} (hv : v ∈ U) (f : spa.presheaf_value U) | |
/-- The map from F(U) to K_v for v ∈ U, that restricts a section of the structure presheaf | |
to the completion of the valuation field of v. -/ | |
noncomputable def to_valuation_field_completion : | |
completion (valuation_field (Spv.out v.1)) := | |
to_complete_valuation_field _ (spa.mem_rational_open_subset_nhd hv) $ | |
f.1 $ spa.rational_open_subset_nhd hv | |
/-- Restricting a section of the structure presheaf to a smaller open set is a ring homomorphism.-/ | |
instance restriction_is_ring_hom (U : opens (spa A)) (r : rational_open_data_subsets U) : | |
is_ring_hom (λ (f : presheaf_value U), f.val r) := | |
{ map_one := rfl, | |
map_mul := λ _ _, rfl, | |
map_add := λ _ _, rfl } | |
/-- The map that restricts a section of the structure presheaf above U to the completion of | |
the valuation field of v ∈ U is a ring homomorphism. -/ | |
instance : is_ring_hom (to_valuation_field_completion hv) := | |
begin | |
show is_ring_hom | |
((to_complete_valuation_field _ (spa.mem_rational_open_subset_nhd hv)) ∘ | |
(λ (f : presheaf_value U), (f.val (spa.rational_open_subset_nhd hv)))), | |
exact is_ring_hom.comp _ _, | |
end | |
-- We need to prove that if V ⊆ U then to_valuation_field_completion commutes with restriction. | |
-- Before we even start with this terrifying noncomputable spa.rational_open_subset_nhd | |
-- let's check that spa.rat_open_data_completion.to_complete_valuation_field commutes with ≤. | |
-- We will place these helper lemmas in a separate namespace | |
namespace to_valuation_field_completion_well_defined | |
variables {r1 r2 : rational_open_data_subsets U} | |
variables (h1 : v ∈ r1.1.open_set) (h2 : v ∈ r2.1.open_set) | |
include h1 h2 | |
lemma aux₁ : | |
to_complete_valuation_field _ h1 (f.1 r1) = to_complete_valuation_field _ | |
(show v ∈ (r1.1.inter r2.1).open_set, by { rw inter_open_set, exact ⟨h1, h2⟩ }) | |
(f.1 (rational_open_data_subsets_inter r1 r2)) := | |
begin | |
rw ← to_valuation_field_commutes h1 _ (rational_open_data.le_inter_left r1.1 r2.1), | |
swap, { rw rational_open_data.inter_open_set, exact ⟨h1, h2⟩ }, | |
delta function.comp, | |
congr' 1, | |
-- exact times out here; convert closes the goal really quickly | |
convert f.2 r1 (rational_open_data_subsets_inter r1 r2) _, | |
end | |
-- now the other way | |
lemma aux₂ : | |
to_complete_valuation_field _ h2 (f.1 r2) = to_complete_valuation_field _ | |
(show v ∈ (r1.1.inter r2.1).open_set, by { rw inter_open_set, exact ⟨h1, h2⟩ }) | |
(f.1 (rational_open_data_subsets_inter r1 r2)) := | |
begin | |
rw ← to_valuation_field_commutes h2 _ (rational_open_data.le_inter_right r1.1 r2.1), | |
swap, { rw rational_open_data.inter_open_set, exact ⟨h1, h2⟩ }, | |
delta function.comp, | |
congr' 1, | |
-- exact times out here; convert closes the goal really quickly | |
convert f.2 r2 (rational_open_data_subsets_inter r1 r2) _, | |
end | |
-- now let's check it agrees on any rational_open_data_subsets | |
lemma aux₃ : | |
to_complete_valuation_field _ h1 (f.1 r1) = to_complete_valuation_field _ h2 (f.1 r2) := | |
by rw [aux₁ f h1 h2, aux₂ f h1 h2] | |
end to_valuation_field_completion_well_defined | |
-- next I will prove that for every r : rational_open_data_subsets U with v ∈ r.1.rational_open, | |
-- f gets sent to the same thing. | |
lemma to_valuation_field_completion_well_defined | |
(r : rational_open_data_subsets U) (hr : v ∈ r.1.open_set) : | |
to_valuation_field_completion hv f = to_complete_valuation_field _ hr (f.1 r) := | |
to_valuation_field_completion_well_defined.aux₃ f _ hr | |
-- now the main goal | |
/-- If v ∈ U then the map from 𝒪_X(U) to `completion (valuation_field v)` | |
commutes with restriction (so we can get a map from the stalk at v) -/ | |
theorem to_valuation_field_completion_commutes {U V : opens (spa A)} (hv : v ∈ U) | |
(hUV : U ⊆ V) (f : spa.presheaf_value V) : | |
to_valuation_field_completion (hUV hv) f = | |
to_valuation_field_completion hv (spa.presheaf_map hUV f) := | |
begin | |
-- to_valuation_field_completion involves choosing a random basis element. | |
let rU := rational_open_subset_nhd hv, | |
let rV := rational_open_subset_nhd (hUV hv), | |
-- we now need to intersect these two things. | |
let rUV1 := rU.1.inter rV.1, | |
rw [to_valuation_field_completion_well_defined hv (spa.presheaf_map hUV f) ⟨rUV1, _⟩, | |
to_valuation_field_completion_well_defined (hUV hv) f ⟨rUV1, _⟩], | |
{ refl }, | |
{ rw rational_open_data.inter_open_set, | |
exact ⟨mem_rational_open_subset_nhd hv, mem_rational_open_subset_nhd _⟩, }, | |
{ rw rational_open_data.inter_open_set, | |
exact set.subset.trans (set.inter_subset_left _ _) rU.2 }, | |
end | |
set_option class.instance_max_depth 49 | |
/--An auxiliary function in the definition of the valuations on the stalks | |
of the structure presheaf of the adic spectrum of a Huber pair: | |
the valuation is obtained by pulling back a valuation along this function. | |
It is the natural map from the stalk above a point in spa(A), | |
which is an equivalence class of valuations, | |
to the completion of the valuation field of a valuation | |
that is a representative of this equivalence class. -/ | |
noncomputable def stalk_to_valuation_field (x : spa A) : | |
stalk_of_rings (spa.presheaf_of_topological_rings A).to_presheaf_of_rings x → | |
completion (valuation_field (Spv.out x.1)) := | |
to_stalk.rec (spa.presheaf_of_topological_rings A).to_presheaf_of_rings x | |
(completion (valuation_field (Spv.out x.1))) (λ U hxU, to_valuation_field_completion hxU) | |
(λ U V HUV r hxU, (to_valuation_field_completion_commutes hxU HUV r).symm) | |
/-- The natural map from the stalk above a point v in spa(A) to the | |
completion of the valuation field of v is a ring homomorphism. -/ | |
instance stalk_to_valuation_field.is_ring_hom (x : spa A) : | |
is_ring_hom (stalk_to_valuation_field x) := to_stalk.rec_is_ring_hom _ _ _ _ _ | |
/--The valuation on the stalk of the structure presheaf of the adic spectrum.-/ | |
noncomputable def stalk_valuation (x : spa A) : | |
valuation (stalk_of_rings (spa.presheaf_of_topological_rings A).to_presheaf_of_rings x) | |
(value_monoid (out x.1)) := | |
(valuation_on_completion (out x.1)).comap (stalk_to_valuation_field x) | |
end presheaf | |
end spa | |