import Spa.localization_Huber import Spa.presheaf import sheaves.stalk_of_rings /-! # The valuation on the stalk We define the valuations on the stalks of the structure presheaf of the adic spectrum. The strategy is as follows: 1. Recall that a point in the adic spectrum is an equivalence class of valuations. We pick a representative v. This valuation has a valuation field that does not depend on the choice of representative (up to isomorphism). 2. Define a map from the stalk above [v] to K_v-hat, the completion of the valuation field of v. 3. Extend v to the completion of its valuation field. 4. Pullback v along the map constructed in 2. The hard parts of this outline are #2 and #3, however #3 has been dealt with in valuation/valuation_field_completion.lean. That leaves us with #2. The stalk of a presheaf F at a point x consists of “germs”: pairs (U,s) of an open neighbourhood U of x and a section s in F(U), modulo an equivalence relation. To define a map out of the stalk, we can use a recursor, and define the map on the sections s in F(U) for open neigbourhoods U of x. But we have to check a compatibility condition, and this takes some effort. Let us translate this to the context of the structure presheaf of the adic spectrum. The sections above a rational open subset R(T/s) are: rat_open_data_completion r := A * We define a map A → K_v-hat. * We show that this map satisfies the property that if v in D(T1,s1) ⊂ D(T2,s2) then the maps A → K_v-hat commute with the restriction map. * We then show that we can get compatible maps O_X(U) → K_v-hat for an arbitrary open with v ∈ U. Once this is in place, we can apply the recursor, to get the desired map from #2. -/ open_locale classical open topological_space valuation Spv spa uniform_space namespace spa variable {A : Huber_pair} local attribute [instance] valued.uniform_space namespace rational_open_data /-- The natural map from A to the completion of the valuation field of a valuation v contained in R(T/s). -/ noncomputable def to_complete_valuation_field (r : rational_open_data A) {v : spa A} (hv : v ∈ r.open_set) : rat_open_data_completion r → completion (valuation_field (Spv.out v.1)) := completion.map (Huber_pair.rational_open_data.to_valuation_field hv) variables {r r1 r2 : rational_open_data A} {v : spa A} (hv : v ∈ r.open_set) /-- The natural map from A to the completion of the valuation field of a valuation v contained in R(T/s) is a ring homomorphism. -/ instance to_complete_valuation_field_is_ring_hom : is_ring_hom (r.to_complete_valuation_field hv) := completion.is_ring_hom_map (Huber_pair.rational_open_data.to_valuation_field_cts hv) -- Next we need to show that the completed maps to K_v-hat -- all commute with the restriction maps. /-- The maps from rationals opens to completions commute with allowable restriction maps. -/ theorem to_valuation_field_commutes (hv1 : v ∈ r1.open_set) (hv2 : v ∈ r2.open_set) (h : r1 ≤ r2) : (r2.to_complete_valuation_field hv2) ∘ (rat_open_data_completion.restriction h) = (r1.to_complete_valuation_field hv1) := begin delta to_complete_valuation_field, delta rat_open_data_completion.restriction, have uc1 : uniform_continuous (rational_open_data.localization_map h), from rational_open_data.localization_map_is_uniform_continuous h, have uc2 : uniform_continuous (Huber_pair.rational_open_data.to_valuation_field hv2), from uniform_continuous_of_continuous (Huber_pair.rational_open_data.to_valuation_field_cts hv2), rw [Huber_pair.rational_open_data.to_valuation_field_commutes hv1 hv2 h, completion.map_comp uc2 uc1] end end rational_open_data -- Now we need to show that for any 𝒪_X(U) with v in U we have a map to K_v-hat. -- First let's write a noncomputable function which gets a basis element. section variables {v : spa A} {U : opens (spa A)} lemma exists_rational_open_subset (hv : v ∈ U) : ∃ r : rational_open_data_subsets U, v ∈ r.1.open_set := begin suffices : U.1 ∈ nhds v, { rw mem_nhds_of_is_topological_basis (rational_basis.is_basis) at this, rcases this with ⟨_, ⟨r, rfl⟩, hv, hr⟩, use ⟨r, hr⟩, exact hv, }, apply mem_nhds_sets U.2 hv, end /-- Given an open set U and a valuation v, this function chooses a random rational open subset containing v and contained in U. -/ noncomputable def rational_open_subset_nhd (hv : v ∈ U) : rational_open_data_subsets U := classical.some $ spa.exists_rational_open_subset hv lemma mem_rational_open_subset_nhd (hv : v ∈ U) : v ∈ (spa.rational_open_subset_nhd hv).1.open_set := classical.some_spec $ spa.exists_rational_open_subset hv end namespace presheaf open rational_open_data variables {v : spa A} {U : opens (spa A)} (hv : v ∈ U) (f : spa.presheaf_value U) /-- The map from F(U) to K_v for v ∈ U, that restricts a section of the structure presheaf to the completion of the valuation field of v. -/ noncomputable def to_valuation_field_completion : completion (valuation_field (Spv.out v.1)) := to_complete_valuation_field _ (spa.mem_rational_open_subset_nhd hv) $ f.1 $ spa.rational_open_subset_nhd hv /-- Restricting a section of the structure presheaf to a smaller open set is a ring homomorphism.-/ instance restriction_is_ring_hom (U : opens (spa A)) (r : rational_open_data_subsets U) : is_ring_hom (λ (f : presheaf_value U), f.val r) := { map_one := rfl, map_mul := λ _ _, rfl, map_add := λ _ _, rfl } /-- The map that restricts a section of the structure presheaf above U to the completion of the valuation field of v ∈ U is a ring homomorphism. -/ instance : is_ring_hom (to_valuation_field_completion hv) := begin show is_ring_hom ((to_complete_valuation_field _ (spa.mem_rational_open_subset_nhd hv)) ∘ (λ (f : presheaf_value U), (f.val (spa.rational_open_subset_nhd hv)))), exact is_ring_hom.comp _ _, end -- We need to prove that if V ⊆ U then to_valuation_field_completion commutes with restriction. -- Before we even start with this terrifying noncomputable spa.rational_open_subset_nhd -- let's check that spa.rat_open_data_completion.to_complete_valuation_field commutes with ≤. -- We will place these helper lemmas in a separate namespace namespace to_valuation_field_completion_well_defined variables {r1 r2 : rational_open_data_subsets U} variables (h1 : v ∈ r1.1.open_set) (h2 : v ∈ r2.1.open_set) include h1 h2 lemma aux₁ : to_complete_valuation_field _ h1 (f.1 r1) = to_complete_valuation_field _ (show v ∈ (r1.1.inter r2.1).open_set, by { rw inter_open_set, exact ⟨h1, h2⟩ }) (f.1 (rational_open_data_subsets_inter r1 r2)) := begin rw ← to_valuation_field_commutes h1 _ (rational_open_data.le_inter_left r1.1 r2.1), swap, { rw rational_open_data.inter_open_set, exact ⟨h1, h2⟩ }, delta function.comp, congr' 1, -- exact times out here; convert closes the goal really quickly convert f.2 r1 (rational_open_data_subsets_inter r1 r2) _, end -- now the other way lemma aux₂ : to_complete_valuation_field _ h2 (f.1 r2) = to_complete_valuation_field _ (show v ∈ (r1.1.inter r2.1).open_set, by { rw inter_open_set, exact ⟨h1, h2⟩ }) (f.1 (rational_open_data_subsets_inter r1 r2)) := begin rw ← to_valuation_field_commutes h2 _ (rational_open_data.le_inter_right r1.1 r2.1), swap, { rw rational_open_data.inter_open_set, exact ⟨h1, h2⟩ }, delta function.comp, congr' 1, -- exact times out here; convert closes the goal really quickly convert f.2 r2 (rational_open_data_subsets_inter r1 r2) _, end -- now let's check it agrees on any rational_open_data_subsets lemma aux₃ : to_complete_valuation_field _ h1 (f.1 r1) = to_complete_valuation_field _ h2 (f.1 r2) := by rw [aux₁ f h1 h2, aux₂ f h1 h2] end to_valuation_field_completion_well_defined -- next I will prove that for every r : rational_open_data_subsets U with v ∈ r.1.rational_open, -- f gets sent to the same thing. lemma to_valuation_field_completion_well_defined (r : rational_open_data_subsets U) (hr : v ∈ r.1.open_set) : to_valuation_field_completion hv f = to_complete_valuation_field _ hr (f.1 r) := to_valuation_field_completion_well_defined.aux₃ f _ hr -- now the main goal /-- If v ∈ U then the map from 𝒪_X(U) to `completion (valuation_field v)` commutes with restriction (so we can get a map from the stalk at v) -/ theorem to_valuation_field_completion_commutes {U V : opens (spa A)} (hv : v ∈ U) (hUV : U ⊆ V) (f : spa.presheaf_value V) : to_valuation_field_completion (hUV hv) f = to_valuation_field_completion hv (spa.presheaf_map hUV f) := begin -- to_valuation_field_completion involves choosing a random basis element. let rU := rational_open_subset_nhd hv, let rV := rational_open_subset_nhd (hUV hv), -- we now need to intersect these two things. let rUV1 := rU.1.inter rV.1, rw [to_valuation_field_completion_well_defined hv (spa.presheaf_map hUV f) ⟨rUV1, _⟩, to_valuation_field_completion_well_defined (hUV hv) f ⟨rUV1, _⟩], { refl }, { rw rational_open_data.inter_open_set, exact ⟨mem_rational_open_subset_nhd hv, mem_rational_open_subset_nhd _⟩, }, { rw rational_open_data.inter_open_set, exact set.subset.trans (set.inter_subset_left _ _) rU.2 }, end set_option class.instance_max_depth 49 /--An auxiliary function in the definition of the valuations on the stalks of the structure presheaf of the adic spectrum of a Huber pair: the valuation is obtained by pulling back a valuation along this function. It is the natural map from the stalk above a point in spa(A), which is an equivalence class of valuations, to the completion of the valuation field of a valuation that is a representative of this equivalence class. -/ noncomputable def stalk_to_valuation_field (x : spa A) : stalk_of_rings (spa.presheaf_of_topological_rings A).to_presheaf_of_rings x → completion (valuation_field (Spv.out x.1)) := to_stalk.rec (spa.presheaf_of_topological_rings A).to_presheaf_of_rings x (completion (valuation_field (Spv.out x.1))) (λ U hxU, to_valuation_field_completion hxU) (λ U V HUV r hxU, (to_valuation_field_completion_commutes hxU HUV r).symm) /-- The natural map from the stalk above a point v in spa(A) to the completion of the valuation field of v is a ring homomorphism. -/ instance stalk_to_valuation_field.is_ring_hom (x : spa A) : is_ring_hom (stalk_to_valuation_field x) := to_stalk.rec_is_ring_hom _ _ _ _ _ /--The valuation on the stalk of the structure presheaf of the adic spectrum.-/ noncomputable def stalk_valuation (x : spa A) : valuation (stalk_of_rings (spa.presheaf_of_topological_rings A).to_presheaf_of_rings x) (value_monoid (out x.1)) := (valuation_on_completion (out x.1)).comap (stalk_to_valuation_field x) end presheaf end spa