Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Yaël Dillies. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Yaël Dillies | |
-/ | |
import order.upper_lower | |
import topology.sets.closeds | |
/-! | |
# Clopen upper sets | |
In this file we define the type of clopen upper sets. | |
-/ | |
open set topological_space | |
variables {α β : Type*} [topological_space α] [has_le α] [topological_space β] [has_le β] | |
/-! ### Compact open sets -/ | |
/-- The type of clopen upper sets of a topological space. -/ | |
structure clopen_upper_set (α : Type*) [topological_space α] [has_le α] extends clopens α := | |
(upper' : is_upper_set carrier) | |
namespace clopen_upper_set | |
instance : set_like (clopen_upper_set α) α := | |
{ coe := λ s, s.carrier, | |
coe_injective' := λ s t h, by { obtain ⟨⟨_, _⟩, _⟩ := s, obtain ⟨⟨_, _⟩, _⟩ := t, congr' } } | |
lemma upper (s : clopen_upper_set α) : is_upper_set (s : set α) := s.upper' | |
lemma clopen (s : clopen_upper_set α) : is_clopen (s : set α) := s.clopen' | |
/-- Reinterpret a upper clopen as an upper set. -/ | |
@[simps] def to_upper_set (s : clopen_upper_set α) : upper_set α := ⟨s, s.upper⟩ | |
@[ext] protected lemma ext {s t : clopen_upper_set α} (h : (s : set α) = t) : s = t := | |
set_like.ext' h | |
@[simp] lemma coe_mk (s : clopens α) (h) : (mk s h : set α) = s := rfl | |
instance : has_sup (clopen_upper_set α) := | |
⟨λ s t, ⟨s.to_clopens ⊔ t.to_clopens, s.upper.union t.upper⟩⟩ | |
instance : has_inf (clopen_upper_set α) := | |
⟨λ s t, ⟨s.to_clopens ⊓ t.to_clopens, s.upper.inter t.upper⟩⟩ | |
instance : has_top (clopen_upper_set α) := ⟨⟨⊤, is_upper_set_univ⟩⟩ | |
instance : has_bot (clopen_upper_set α) := ⟨⟨⊥, is_upper_set_empty⟩⟩ | |
instance : lattice (clopen_upper_set α) := | |
set_like.coe_injective.lattice _ (λ _ _, rfl) (λ _ _, rfl) | |
instance : bounded_order (clopen_upper_set α) := | |
bounded_order.lift (coe : _ → set α) (λ _ _, id) rfl rfl | |
@[simp] lemma coe_sup (s t : clopen_upper_set α) : (↑(s ⊔ t) : set α) = s ∪ t := rfl | |
@[simp] lemma coe_inf (s t : clopen_upper_set α) : (↑(s ⊓ t) : set α) = s ∩ t := rfl | |
@[simp] lemma coe_top : (↑(⊤ : clopen_upper_set α) : set α) = univ := rfl | |
@[simp] lemma coe_bot : (↑(⊥ : clopen_upper_set α) : set α) = ∅ := rfl | |
instance : inhabited (clopen_upper_set α) := ⟨⊥⟩ | |
end clopen_upper_set | |