/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import order.upper_lower import topology.sets.closeds /-! # Clopen upper sets In this file we define the type of clopen upper sets. -/ open set topological_space variables {α β : Type*} [topological_space α] [has_le α] [topological_space β] [has_le β] /-! ### Compact open sets -/ /-- The type of clopen upper sets of a topological space. -/ structure clopen_upper_set (α : Type*) [topological_space α] [has_le α] extends clopens α := (upper' : is_upper_set carrier) namespace clopen_upper_set instance : set_like (clopen_upper_set α) α := { coe := λ s, s.carrier, coe_injective' := λ s t h, by { obtain ⟨⟨_, _⟩, _⟩ := s, obtain ⟨⟨_, _⟩, _⟩ := t, congr' } } lemma upper (s : clopen_upper_set α) : is_upper_set (s : set α) := s.upper' lemma clopen (s : clopen_upper_set α) : is_clopen (s : set α) := s.clopen' /-- Reinterpret a upper clopen as an upper set. -/ @[simps] def to_upper_set (s : clopen_upper_set α) : upper_set α := ⟨s, s.upper⟩ @[ext] protected lemma ext {s t : clopen_upper_set α} (h : (s : set α) = t) : s = t := set_like.ext' h @[simp] lemma coe_mk (s : clopens α) (h) : (mk s h : set α) = s := rfl instance : has_sup (clopen_upper_set α) := ⟨λ s t, ⟨s.to_clopens ⊔ t.to_clopens, s.upper.union t.upper⟩⟩ instance : has_inf (clopen_upper_set α) := ⟨λ s t, ⟨s.to_clopens ⊓ t.to_clopens, s.upper.inter t.upper⟩⟩ instance : has_top (clopen_upper_set α) := ⟨⟨⊤, is_upper_set_univ⟩⟩ instance : has_bot (clopen_upper_set α) := ⟨⟨⊥, is_upper_set_empty⟩⟩ instance : lattice (clopen_upper_set α) := set_like.coe_injective.lattice _ (λ _ _, rfl) (λ _ _, rfl) instance : bounded_order (clopen_upper_set α) := bounded_order.lift (coe : _ → set α) (λ _ _, id) rfl rfl @[simp] lemma coe_sup (s t : clopen_upper_set α) : (↑(s ⊔ t) : set α) = s ∪ t := rfl @[simp] lemma coe_inf (s t : clopen_upper_set α) : (↑(s ⊓ t) : set α) = s ∩ t := rfl @[simp] lemma coe_top : (↑(⊤ : clopen_upper_set α) : set α) = univ := rfl @[simp] lemma coe_bot : (↑(⊥ : clopen_upper_set α) : set α) = ∅ := rfl instance : inhabited (clopen_upper_set α) := ⟨⊥⟩ end clopen_upper_set