Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Floris van Doorn. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Floris van Doorn, Yaël Dillies | |
-/ | |
import topology.sets.closeds | |
/-! | |
# Compact sets | |
We define a few types of compact sets in a topological space. | |
## Main Definitions | |
For a topological space `α`, | |
* `compacts α`: The type of compact sets. | |
* `nonempty_compacts α`: The type of non-empty compact sets. | |
* `positive_compacts α`: The type of compact sets with non-empty interior. | |
* `compact_opens α`: The type of compact open sets. This is a central object in the study of | |
spectral spaces. | |
-/ | |
open set | |
variables {α β : Type*} [topological_space α] [topological_space β] | |
namespace topological_space | |
/-! ### Compact sets -/ | |
/-- The type of compact sets of a topological space. -/ | |
structure compacts (α : Type*) [topological_space α] := | |
(carrier : set α) | |
(compact' : is_compact carrier) | |
namespace compacts | |
variables {α} | |
instance : set_like (compacts α) α := | |
{ coe := compacts.carrier, | |
coe_injective' := λ s t h, by { cases s, cases t, congr' } } | |
lemma compact (s : compacts α) : is_compact (s : set α) := s.compact' | |
instance (K : compacts α) : compact_space K := is_compact_iff_compact_space.1 K.compact | |
instance : can_lift (set α) (compacts α) := | |
{ coe := coe, | |
cond := is_compact, | |
prf := λ K hK, ⟨⟨K, hK⟩, rfl⟩ } | |
@[ext] protected lemma ext {s t : compacts α} (h : (s : set α) = t) : s = t := set_like.ext' h | |
@[simp] lemma coe_mk (s : set α) (h) : (mk s h : set α) = s := rfl | |
@[simp] lemma carrier_eq_coe (s : compacts α) : s.carrier = s := rfl | |
instance : has_sup (compacts α) := ⟨λ s t, ⟨s ∪ t, s.compact.union t.compact⟩⟩ | |
instance [t2_space α] : has_inf (compacts α) := ⟨λ s t, ⟨s ∩ t, s.compact.inter t.compact⟩⟩ | |
instance [compact_space α] : has_top (compacts α) := ⟨⟨univ, compact_univ⟩⟩ | |
instance : has_bot (compacts α) := ⟨⟨∅, is_compact_empty⟩⟩ | |
instance : semilattice_sup (compacts α) := set_like.coe_injective.semilattice_sup _ (λ _ _, rfl) | |
instance [t2_space α] : distrib_lattice (compacts α) := | |
set_like.coe_injective.distrib_lattice _ (λ _ _, rfl) (λ _ _, rfl) | |
instance : order_bot (compacts α) := order_bot.lift (coe : _ → set α) (λ _ _, id) rfl | |
instance [compact_space α] : bounded_order (compacts α) := | |
bounded_order.lift (coe : _ → set α) (λ _ _, id) rfl rfl | |
/-- The type of compact sets is inhabited, with default element the empty set. -/ | |
instance : inhabited (compacts α) := ⟨⊥⟩ | |
@[simp] lemma coe_sup (s t : compacts α) : (↑(s ⊔ t) : set α) = s ∪ t := rfl | |
@[simp] lemma coe_inf [t2_space α] (s t : compacts α) : (↑(s ⊓ t) : set α) = s ∩ t := rfl | |
@[simp] lemma coe_top [compact_space α] : (↑(⊤ : compacts α) : set α) = univ := rfl | |
@[simp] lemma coe_bot : (↑(⊥ : compacts α) : set α) = ∅ := rfl | |
@[simp] lemma coe_finset_sup {ι : Type*} {s : finset ι} {f : ι → compacts α} : | |
(↑(s.sup f) : set α) = s.sup (λ i, f i) := | |
begin | |
classical, | |
refine finset.induction_on s rfl (λ a s _ h, _), | |
simp_rw [finset.sup_insert, coe_sup, sup_eq_union], | |
congr', | |
end | |
/-- The image of a compact set under a continuous function. -/ | |
protected def map (f : α → β) (hf : continuous f) (K : compacts α) : compacts β := | |
⟨f '' K.1, K.2.image hf⟩ | |
@[simp] lemma coe_map {f : α → β} (hf : continuous f) (s : compacts α) : | |
(s.map f hf : set β) = f '' s := rfl | |
/-- A homeomorphism induces an equivalence on compact sets, by taking the image. -/ | |
@[simp] protected def equiv (f : α ≃ₜ β) : compacts α ≃ compacts β := | |
{ to_fun := compacts.map f f.continuous, | |
inv_fun := compacts.map _ f.symm.continuous, | |
left_inv := λ s, by { ext1, simp only [coe_map, ← image_comp, f.symm_comp_self, image_id] }, | |
right_inv := λ s, by { ext1, simp only [coe_map, ← image_comp, f.self_comp_symm, image_id] } } | |
/-- The image of a compact set under a homeomorphism can also be expressed as a preimage. -/ | |
lemma equiv_to_fun_val (f : α ≃ₜ β) (K : compacts α) : | |
(compacts.equiv f K).1 = f.symm ⁻¹' K.1 := | |
congr_fun (image_eq_preimage_of_inverse f.left_inv f.right_inv) K.1 | |
/-- The product of two `compacts`, as a `compacts` in the product space. -/ | |
protected def prod (K : compacts α) (L : compacts β) : compacts (α × β) := | |
{ carrier := K ×ˢ L, | |
compact' := is_compact.prod K.2 L.2 } | |
@[simp] lemma coe_prod (K : compacts α) (L : compacts β) : (K.prod L : set (α × β)) = K ×ˢ L := rfl | |
end compacts | |
/-! ### Nonempty compact sets -/ | |
/-- The type of nonempty compact sets of a topological space. -/ | |
structure nonempty_compacts (α : Type*) [topological_space α] extends compacts α := | |
(nonempty' : carrier.nonempty) | |
namespace nonempty_compacts | |
instance : set_like (nonempty_compacts α) α := | |
{ coe := λ s, s.carrier, | |
coe_injective' := λ s t h, by { obtain ⟨⟨_, _⟩, _⟩ := s, obtain ⟨⟨_, _⟩, _⟩ := t, congr' } } | |
lemma compact (s : nonempty_compacts α) : is_compact (s : set α) := s.compact' | |
protected lemma nonempty (s : nonempty_compacts α) : (s : set α).nonempty := s.nonempty' | |
/-- Reinterpret a nonempty compact as a closed set. -/ | |
def to_closeds [t2_space α] (s : nonempty_compacts α) : closeds α := ⟨s, s.compact.is_closed⟩ | |
@[ext] protected lemma ext {s t : nonempty_compacts α} (h : (s : set α) = t) : s = t := | |
set_like.ext' h | |
@[simp] lemma coe_mk (s : compacts α) (h) : (mk s h : set α) = s := rfl | |
@[simp] lemma carrier_eq_coe (s : nonempty_compacts α) : s.carrier = s := rfl | |
instance : has_sup (nonempty_compacts α) := | |
⟨λ s t, ⟨s.to_compacts ⊔ t.to_compacts, s.nonempty.mono $ subset_union_left _ _⟩⟩ | |
instance [compact_space α] [nonempty α] : has_top (nonempty_compacts α) := ⟨⟨⊤, univ_nonempty⟩⟩ | |
instance : semilattice_sup (nonempty_compacts α) := | |
set_like.coe_injective.semilattice_sup _ (λ _ _, rfl) | |
instance [compact_space α] [nonempty α] : order_top (nonempty_compacts α) := | |
order_top.lift (coe : _ → set α) (λ _ _, id) rfl | |
@[simp] lemma coe_sup (s t : nonempty_compacts α) : (↑(s ⊔ t) : set α) = s ∪ t := rfl | |
@[simp] lemma coe_top [compact_space α] [nonempty α] : | |
(↑(⊤ : nonempty_compacts α) : set α) = univ := rfl | |
/-- In an inhabited space, the type of nonempty compact subsets is also inhabited, with | |
default element the singleton set containing the default element. -/ | |
instance [inhabited α] : inhabited (nonempty_compacts α) := | |
⟨{ carrier := {default}, compact' := is_compact_singleton, nonempty' := singleton_nonempty _ }⟩ | |
instance to_compact_space {s : nonempty_compacts α} : compact_space s := | |
is_compact_iff_compact_space.1 s.compact | |
instance to_nonempty {s : nonempty_compacts α} : nonempty s := s.nonempty.to_subtype | |
/-- The product of two `nonempty_compacts`, as a `nonempty_compacts` in the product space. -/ | |
protected def prod (K : nonempty_compacts α) (L : nonempty_compacts β) : | |
nonempty_compacts (α × β) := | |
{ nonempty' := K.nonempty.prod L.nonempty, | |
.. K.to_compacts.prod L.to_compacts } | |
@[simp] lemma coe_prod (K : nonempty_compacts α) (L : nonempty_compacts β) : | |
(K.prod L : set (α × β)) = K ×ˢ L := rfl | |
end nonempty_compacts | |
/-! ### Positive compact sets -/ | |
/-- The type of compact sets with nonempty interior of a topological space. | |
See also `compacts` and `nonempty_compacts`. -/ | |
structure positive_compacts (α : Type*) [topological_space α] extends compacts α := | |
(interior_nonempty' : (interior carrier).nonempty) | |
namespace positive_compacts | |
instance : set_like (positive_compacts α) α := | |
{ coe := λ s, s.carrier, | |
coe_injective' := λ s t h, by { obtain ⟨⟨_, _⟩, _⟩ := s, obtain ⟨⟨_, _⟩, _⟩ := t, congr' } } | |
lemma compact (s : positive_compacts α) : is_compact (s : set α) := s.compact' | |
lemma interior_nonempty (s : positive_compacts α) : (interior (s : set α)).nonempty := | |
s.interior_nonempty' | |
protected lemma nonempty (s : positive_compacts α) : (s : set α).nonempty := | |
s.interior_nonempty.mono interior_subset | |
/-- Reinterpret a positive compact as a nonempty compact. -/ | |
def to_nonempty_compacts (s : positive_compacts α) : nonempty_compacts α := | |
⟨s.to_compacts, s.nonempty⟩ | |
@[ext] protected lemma ext {s t : positive_compacts α} (h : (s : set α) = t) : s = t := | |
set_like.ext' h | |
@[simp] lemma coe_mk (s : compacts α) (h) : (mk s h : set α) = s := rfl | |
@[simp] lemma carrier_eq_coe (s : positive_compacts α) : s.carrier = s := rfl | |
instance : has_sup (positive_compacts α) := | |
⟨λ s t, ⟨s.to_compacts ⊔ t.to_compacts, | |
s.interior_nonempty.mono $ interior_mono $ subset_union_left _ _⟩⟩ | |
instance [compact_space α] [nonempty α] : has_top (positive_compacts α) := | |
⟨⟨⊤, interior_univ.symm.subst univ_nonempty⟩⟩ | |
instance : semilattice_sup (positive_compacts α) := | |
set_like.coe_injective.semilattice_sup _ (λ _ _, rfl) | |
instance [compact_space α] [nonempty α] : order_top (positive_compacts α) := | |
order_top.lift (coe : _ → set α) (λ _ _, id) rfl | |
@[simp] lemma coe_sup (s t : positive_compacts α) : (↑(s ⊔ t) : set α) = s ∪ t := rfl | |
@[simp] lemma coe_top [compact_space α] [nonempty α] : | |
(↑(⊤ : positive_compacts α) : set α) = univ := rfl | |
lemma _root_.exists_positive_compacts_subset [locally_compact_space α] {U : set α} (ho : is_open U) | |
(hn : U.nonempty) : ∃ K : positive_compacts α, ↑K ⊆ U := | |
let ⟨x, hx⟩ := hn, ⟨K, hKc, hxK, hKU⟩ := exists_compact_subset ho hx in ⟨⟨⟨K, hKc⟩, ⟨x, hxK⟩⟩, hKU⟩ | |
instance [compact_space α] [nonempty α] : inhabited (positive_compacts α) := ⟨⊤⟩ | |
/-- In a nonempty locally compact space, there exists a compact set with nonempty interior. -/ | |
instance nonempty' [locally_compact_space α] [nonempty α] : nonempty (positive_compacts α) := | |
nonempty_of_exists $ exists_positive_compacts_subset is_open_univ univ_nonempty | |
/-- The product of two `positive_compacts`, as a `positive_compacts` in the product space. -/ | |
protected def prod (K : positive_compacts α) (L : positive_compacts β) : | |
positive_compacts (α × β) := | |
{ interior_nonempty' := | |
begin | |
simp only [compacts.carrier_eq_coe, compacts.coe_prod, interior_prod_eq], | |
exact K.interior_nonempty.prod L.interior_nonempty, | |
end, | |
.. K.to_compacts.prod L.to_compacts } | |
@[simp] lemma coe_prod (K : positive_compacts α) (L : positive_compacts β) : | |
(K.prod L : set (α × β)) = K ×ˢ L := rfl | |
end positive_compacts | |
/-! ### Compact open sets -/ | |
/-- The type of compact open sets of a topological space. This is useful in non Hausdorff contexts, | |
in particular spectral spaces. -/ | |
structure compact_opens (α : Type*) [topological_space α] extends compacts α := | |
(open' : is_open carrier) | |
namespace compact_opens | |
instance : set_like (compact_opens α) α := | |
{ coe := λ s, s.carrier, | |
coe_injective' := λ s t h, by { obtain ⟨⟨_, _⟩, _⟩ := s, obtain ⟨⟨_, _⟩, _⟩ := t, congr' } } | |
lemma compact (s : compact_opens α) : is_compact (s : set α) := s.compact' | |
lemma «open» (s : compact_opens α) : is_open (s : set α) := s.open' | |
/-- Reinterpret a compact open as an open. -/ | |
@[simps] def to_opens (s : compact_opens α) : opens α := ⟨s, s.open⟩ | |
/-- Reinterpret a compact open as a clopen. -/ | |
@[simps] def to_clopens [t2_space α] (s : compact_opens α) : clopens α := | |
⟨s, s.open, s.compact.is_closed⟩ | |
@[ext] protected lemma ext {s t : compact_opens α} (h : (s : set α) = t) : s = t := set_like.ext' h | |
@[simp] lemma coe_mk (s : compacts α) (h) : (mk s h : set α) = s := rfl | |
instance : has_sup (compact_opens α) := | |
⟨λ s t, ⟨s.to_compacts ⊔ t.to_compacts, s.open.union t.open⟩⟩ | |
instance [t2_space α] : has_inf (compact_opens α) := | |
⟨λ s t, ⟨s.to_compacts ⊓ t.to_compacts, s.open.inter t.open⟩⟩ | |
instance [compact_space α] : has_top (compact_opens α) := ⟨⟨⊤, is_open_univ⟩⟩ | |
instance : has_bot (compact_opens α) := ⟨⟨⊥, is_open_empty⟩⟩ | |
instance [t2_space α] : has_sdiff (compact_opens α) := | |
⟨λ s t, ⟨⟨s \ t, s.compact.diff t.open⟩, s.open.sdiff t.compact.is_closed⟩⟩ | |
instance [t2_space α] [compact_space α] : has_compl (compact_opens α) := | |
⟨λ s, ⟨⟨sᶜ, s.open.is_closed_compl.is_compact⟩, s.compact.is_closed.is_open_compl⟩⟩ | |
instance : semilattice_sup (compact_opens α) := | |
set_like.coe_injective.semilattice_sup _ (λ _ _, rfl) | |
instance : order_bot (compact_opens α) := order_bot.lift (coe : _ → set α) (λ _ _, id) rfl | |
instance [t2_space α] : generalized_boolean_algebra (compact_opens α) := | |
set_like.coe_injective.generalized_boolean_algebra _ (λ _ _, rfl) (λ _ _, rfl) rfl (λ _ _, rfl) | |
instance [compact_space α] : bounded_order (compact_opens α) := | |
bounded_order.lift (coe : _ → set α) (λ _ _, id) rfl rfl | |
instance [t2_space α] [compact_space α] : boolean_algebra (compact_opens α) := | |
set_like.coe_injective.boolean_algebra _ (λ _ _, rfl) (λ _ _, rfl) rfl rfl (λ _, rfl) (λ _ _, rfl) | |
@[simp] lemma coe_sup (s t : compact_opens α) : (↑(s ⊔ t) : set α) = s ∪ t := rfl | |
@[simp] lemma coe_inf [t2_space α] (s t : compact_opens α) : (↑(s ⊓ t) : set α) = s ∩ t := rfl | |
@[simp] lemma coe_top [compact_space α] : (↑(⊤ : compact_opens α) : set α) = univ := rfl | |
@[simp] lemma coe_bot : (↑(⊥ : compact_opens α) : set α) = ∅ := rfl | |
@[simp] lemma coe_sdiff [t2_space α] (s t : compact_opens α) : (↑(s \ t) : set α) = s \ t := rfl | |
@[simp] lemma coe_compl [t2_space α] [compact_space α] (s : compact_opens α) : (↑sᶜ : set α) = sᶜ := | |
rfl | |
instance : inhabited (compact_opens α) := ⟨⊥⟩ | |
/-- The image of a compact open under a continuous open map. -/ | |
@[simps] def map (f : α → β) (hf : continuous f) (hf' : is_open_map f) (s : compact_opens α) : | |
compact_opens β := | |
⟨s.to_compacts.map f hf, hf' _ s.open⟩ | |
@[simp] lemma coe_map {f : α → β} (hf : continuous f) (hf' : is_open_map f) (s : compact_opens α) : | |
(s.map f hf hf' : set β) = f '' s := rfl | |
/-- The product of two `compact_opens`, as a `compact_opens` in the product space. -/ | |
protected def prod (K : compact_opens α) (L : compact_opens β) : | |
compact_opens (α × β) := | |
{ open' := K.open.prod L.open, | |
.. K.to_compacts.prod L.to_compacts } | |
@[simp] lemma coe_prod (K : compact_opens α) (L : compact_opens β) : | |
(K.prod L : set (α × β)) = K ×ˢ L := rfl | |
end compact_opens | |
end topological_space | |