Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
I think it's all done!
fc5e983
raw
history blame
81.6 kB
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import topology.subset_properties
import topology.connected
import topology.nhds_set
import topology.inseparable
/-!
# Separation properties of topological spaces.
This file defines the predicate `separated`, and common separation axioms
(under the Kolmogorov classification).
## Main definitions
* `separated`: Two `set`s are separated if they are contained in disjoint open sets.
* `t0_space`: A T₀/Kolmogorov space is a space where, for every two points `x y`,
there is an open set that contains one, but not the other.
* `t1_space`: A T₁/Fréchet space is a space where every singleton set is closed.
This is equivalent to, for every pair `x y`, there existing an open set containing `x`
but not `y` (`t1_space_iff_exists_open` shows that these conditions are equivalent.)
* `t2_space`: A T₂/Hausdorff space is a space where, for every two points `x y`,
there is two disjoint open sets, one containing `x`, and the other `y`.
* `t2_5_space`: A T₂.₅/Urysohn space is a space where, for every two points `x y`,
there is two open sets, one containing `x`, and the other `y`, whose closures are disjoint.
* `t3_space`: A T₃ space, is one where given any closed `C` and `x C`,
there is disjoint open sets containing `x` and `C` respectively. In `mathlib`, T₃ implies T₂.₅.
* `normal_space`: A T₄ space (sometimes referred to as normal, but authors vary on
whether this includes T₂; `mathlib` does), is one where given two disjoint closed sets,
we can find two open sets that separate them. In `mathlib`, T₄ implies T₃.
## Main results
### T₀ spaces
* `is_closed.exists_closed_singleton` Given a closed set `S` in a compact T₀ space,
there is some `x S` such that `{x}` is closed.
* `exists_open_singleton_of_open_finset` Given an open `finset` `S` in a T₀ space,
there is some `x S` such that `{x}` is open.
### T₁ spaces
* `is_closed_map_const`: The constant map is a closed map.
* `discrete_of_t1_of_finite`: A finite T₁ space must have the discrete topology.
### T₂ spaces
* `t2_iff_nhds`: A space is T₂ iff the neighbourhoods of distinct points generate the bottom filter.
* `t2_iff_is_closed_diagonal`: A space is T₂ iff the `diagonal` of `α` (that is, the set of all
points of the form `(a, a) : α × α`) is closed under the product topology.
* `finset_disjoint_finset_opens_of_t2`: Any two disjoint finsets are `separated`.
* Most topological constructions preserve Hausdorffness;
these results are part of the typeclass inference system (e.g. `embedding.t2_space`)
* `set.eq_on.closure`: If two functions are equal on some set `s`, they are equal on its closure.
* `is_compact.is_closed`: All compact sets are closed.
* `locally_compact_of_compact_nhds`: If every point has a compact neighbourhood,
then the space is locally compact.
* `tot_sep_of_zero_dim`: If `α` has a clopen basis, it is a `totally_separated_space`.
* `loc_compact_t2_tot_disc_iff_tot_sep`: A locally compact T₂ space is totally disconnected iff
it is totally separated.
If the space is also compact:
* `normal_of_compact_t2`: A compact T₂ space is a `normal_space`.
* `connected_components_eq_Inter_clopen`: The connected component of a point
is the intersection of all its clopen neighbourhoods.
* `compact_t2_tot_disc_iff_tot_sep`: Being a `totally_disconnected_space`
is equivalent to being a `totally_separated_space`.
* `connected_components.t2`: `connected_components α` is T₂ for `α` T₂ and compact.
### T₃ spaces
* `disjoint_nested_nhds`: Given two points `x y`, we can find neighbourhoods `x V₁ U₁` and
`y V₂ U₂`, with the `Vₖ` closed and the `Uₖ` open, such that the `Uₖ` are disjoint.
### Discrete spaces
* `discrete_topology_iff_nhds`: Discrete topological spaces are those whose neighbourhood
filters are the `pure` filter (which is the principal filter at a singleton).
* `induced_bot`/`discrete_topology_induced`: The pullback of the discrete topology
under an inclusion is the discrete topology.
## References
https://en.wikipedia.org/wiki/Separation_axiom
-/
open function set filter topological_space
open_locale topological_space filter classical
universes u v
variables {α : Type u} {β : Type v} [topological_space α]
section separation
/--
`separated` is a predicate on pairs of sub`set`s of a topological space. It holds if the two
sub`set`s are contained in disjoint open sets.
-/
def separated : set α set α Prop :=
λ (s t : set α), U V : (set α), (is_open U) is_open V
(s U) (t V) disjoint U V
namespace separated
open separated
@[symm] lemma symm {s t : set α} : separated s t separated t s :=
λ U, V, oU, oV, aU, bV, UV, V, U, oV, oU, bV, aU, disjoint.symm UV
lemma comm (s t : set α) : separated s t separated t s :=
symm, symm
lemma preimage [topological_space β] {f : α β} {s t : set β} (h : separated s t)
(hf : continuous f) : separated (f ⁻¹' s) (f ⁻¹' t) :=
let U, V, oU, oV, sU, tV, UV := h in
f ⁻¹' U, f ⁻¹' V, oU.preimage hf, oV.preimage hf, preimage_mono sU, preimage_mono tV,
UV.preimage f
protected lemma disjoint {s t : set α} (h : separated s t) : disjoint s t :=
let U, V, hU, hV, hsU, htV, hd := h in hd.mono hsU htV
lemma disjoint_closure_left {s t : set α} (h : separated s t) : disjoint (closure s) t :=
let U, V, hU, hV, hsU, htV, hd := h
in (hd.closure_left hV).mono (closure_mono hsU) htV
lemma disjoint_closure_right {s t : set α} (h : separated s t) : disjoint s (closure t) :=
h.symm.disjoint_closure_left.symm
lemma empty_right (a : set α) : separated a :=
_, _, is_open_univ, is_open_empty, λ a h, mem_univ a, λ a h, by cases h, disjoint_empty _
lemma empty_left (a : set α) : separated a :=
(empty_right _).symm
lemma mono {s₁ s₂ t₁ t₂ : set α} (h : separated s₂ t₂) (hs : s₁ s₂) (ht : t₁ t₂) :
separated s₁ t₁ :=
let U, V, hU, hV, hsU, htV, hd := h in U, V, hU, hV, hs.trans hsU, ht.trans htV, hd
lemma union_left {a b c : set α} : separated a c separated b c separated (a b) c :=
λ U, V, oU, oV, aU, bV, UV W, X, oW, oX, aW, bX, WX,
U W, V X, is_open.union oU oW, is_open.inter oV oX,
union_subset_union aU aW, subset_inter bV bX, set.disjoint_union_left.mpr
disjoint_of_subset_right (inter_subset_left _ _) UV,
disjoint_of_subset_right (inter_subset_right _ _) WX⟩⟩
lemma union_right {a b c : set α} (ab : separated a b) (ac : separated a c) :
separated a (b c) :=
(ab.symm.union_left ac.symm).symm
end separated
/-- A T₀ space, also known as a Kolmogorov space, is a topological space such that for every pair
`x y`, there is an open set containing one but not the other. We formulate the definition in terms
of the `inseparable` relation. -/
class t0_space (α : Type u) [topological_space α] : Prop :=
(t0 : ∀ ⦃x y : α⦄, inseparable x yx = y)
lemma t0_space_iff_inseparable (α : Type u) [topological_space α] :
t0_space α ↔ ∀ (x y : α), inseparable x yx = y :=
⟨λ ⟨h⟩, h, λ h, ⟨h⟩⟩
lemma t0_space_iff_not_inseparable (α : Type u) [topological_space α] :
t0_space α ↔ ∀ (x y : α), xy → ¬inseparable x y :=
by simp only [t0_space_iff_inseparable, ne.def, not_imp_not]
lemma inseparable.eq [t0_space α] {x y : α} (h : inseparable x y) : x = y :=
t0_space.t0 h
lemma t0_space_iff_nhds_injective (α : Type u) [topological_space α] :
t0_space α injective (𝓝 : α filter α) :=
t0_space_iff_inseparable α
lemma nhds_injective [t0_space α] : injective (𝓝 : α filter α) :=
(t0_space_iff_nhds_injective α).1 _
@[simp] lemma nhds_eq_nhds_iff [t0_space α] {a b : α} : 𝓝 a = 𝓝 b a = b :=
nhds_injective.eq_iff
lemma t0_space_iff_exists_is_open_xor_mem (α : Type u) [topological_space α] :
t0_space α x y, x y U:set α, is_open U (xor (x U) (y U)) :=
by simp only [t0_space_iff_not_inseparable, xor_iff_not_iff, not_forall, exists_prop,
inseparable_iff_forall_open]
lemma exists_is_open_xor_mem [t0_space α] {x y : α} (h : x y) :
U : set α, is_open U xor (x U) (y U) :=
(t0_space_iff_exists_is_open_xor_mem α).1 _ x y h
/-- Specialization forms a partial order on a t0 topological space. -/
def specialization_order (α : Type*) [topological_space α] [t0_space α] : partial_order α :=
{ .. specialization_preorder α,
.. partial_order.lift (order_dual.to_dual 𝓝) nhds_injective }
instance : t0_space (separation_quotient α) :=
λ x' y', quotient.induction_on₂' x' y' $
λ x y h, separation_quotient.mk_eq_mk.2 $ separation_quotient.inducing_mk.inseparable_iff.1 h
theorem minimal_nonempty_closed_subsingleton [t0_space α] {s : set α} (hs : is_closed s)
(hmin : t s, t.nonempty is_closed t t = s) :
s.subsingleton :=
begin
refine λ x hx y hy, of_not_not (λ hxy, _),
rcases exists_is_open_xor_mem hxy with U, hUo, hU,
wlog h : x U y U := hU using [x y, y x], cases h with hxU hyU,
have : s \ U = s := hmin (s \ U) (diff_subset _ _) y, hy, hyU (hs.sdiff hUo),
exact (this.symm.subset hx).2 hxU
end
theorem minimal_nonempty_closed_eq_singleton [t0_space α] {s : set α} (hs : is_closed s)
(hne : s.nonempty) (hmin : t s, t.nonempty is_closed t t = s) :
x, s = {x} :=
exists_eq_singleton_iff_nonempty_subsingleton.2 hne, minimal_nonempty_closed_subsingleton hs hmin
/-- Given a closed set `S` in a compact T₀ space,
there is some `x S` such that `{x}` is closed. -/
theorem is_closed.exists_closed_singleton {α : Type*} [topological_space α]
[t0_space α] [compact_space α] {S : set α} (hS : is_closed S) (hne : S.nonempty) :
(x : α), x S is_closed ({x} : set α) :=
begin
obtain V, Vsub, Vne, Vcls, hV := hS.exists_minimal_nonempty_closed_subset hne,
rcases minimal_nonempty_closed_eq_singleton Vcls Vne hV with x, rfl,
exact x, Vsub (mem_singleton x), Vcls
end
theorem minimal_nonempty_open_subsingleton [t0_space α] {s : set α} (hs : is_open s)
(hmin : t s, t.nonempty is_open t t = s) :
s.subsingleton :=
begin
refine λ x hx y hy, of_not_not (λ hxy, _),
rcases exists_is_open_xor_mem hxy with U, hUo, hU,
wlog h : x U y U := hU using [x y, y x], cases h with hxU hyU,
have : s U = s := hmin (s U) (inter_subset_left _ _) x, hx, hxU (hs.inter hUo),
exact hyU (this.symm.subset hy).2
end
theorem minimal_nonempty_open_eq_singleton [t0_space α] {s : set α} (hs : is_open s)
(hne : s.nonempty) (hmin : t s, t.nonempty is_open t t = s) :
x, s = {x} :=
exists_eq_singleton_iff_nonempty_subsingleton.2 hne, minimal_nonempty_open_subsingleton hs hmin
/-- Given an open finite set `S` in a T₀ space, there is some `x S` such that `{x}` is open. -/
theorem exists_open_singleton_of_open_finite [t0_space α] {s : set α} (hfin : s.finite)
(hne : s.nonempty) (ho : is_open s) :
x s, is_open ({x} : set α) :=
begin
lift s to finset α using hfin,
induction s using finset.strong_induction_on with s ihs,
rcases em ( t s, t.nonempty is_open (t : set α)) with t, hts, htne, hto⟩|ht,
{ rcases ihs t hts htne hto with x, hxt, hxo,
exact x, hts.1 hxt, hxo },
{ rcases minimal_nonempty_open_eq_singleton ho hne _ with x, hx,
{ exact x, hx.symm rfl, hx ho },
refine λ t hts htne hto, of_not_not (λ hts', ht _),
lift t to finset α using s.finite_to_set.subset hts,
exact t, ssubset_iff_subset_ne.2 hts, mt finset.coe_inj.2 hts', htne, hto }
end
theorem exists_open_singleton_of_fintype [t0_space α] [finite α] [nonempty α] :
x : α, is_open ({x} : set α) :=
let x, _, h := exists_open_singleton_of_open_finite (set.to_finite _) univ_nonempty
is_open_univ in x, h
lemma t0_space_of_injective_of_continuous [topological_space β] {f : α β}
(hf : function.injective f) (hf' : continuous f) [t0_space β] : t0_space α :=
λ x y h, hf $ (h.map hf').eq
protected lemma embedding.t0_space [topological_space β] [t0_space β] {f : α β}
(hf : embedding f) : t0_space α :=
t0_space_of_injective_of_continuous hf.inj hf.continuous
instance subtype.t0_space [t0_space α] {p : α Prop} : t0_space (subtype p) :=
embedding_subtype_coe.t0_space
theorem t0_space_iff_or_not_mem_closure (α : Type u) [topological_space α] :
t0_space α ( a b : α, a b (a closure ({b} : set α) b closure ({a} : set α))) :=
by simp only [t0_space_iff_not_inseparable, inseparable_iff_mem_closure, not_and_distrib]
instance [topological_space β] [t0_space α] [t0_space β] : t0_space (α × β) :=
λ x y h, prod.ext (h.map continuous_fst).eq (h.map continuous_snd).eq
instance {ι : Type*} {π : ι Type*} [Π i, topological_space (π i)] [Π i, t0_space (π i)] :
t0_space (Π i, π i) :=
λ x y h, funext $ λ i, (h.map (continuous_apply i)).eq
lemma t0_space.of_cover (h : x y, inseparable x y s : set α, x s y s t0_space s) :
t0_space α :=
begin
refine λ x y hxy, _,
rcases h x y hxy with s, hxs, hys, hs, resetI,
lift x to s using hxs, lift y to s using hys,
rw subtype_inseparable_iff at hxy,
exact congr_arg coe hxy.eq
end
lemma t0_space.of_open_cover (h : x, s : set α, x s is_open s t0_space s) : t0_space α :=
t0_space.of_cover $ λ x y hxy,
let s, hxs, hso, hs := h x in s, hxs, (hxy.mem_open_iff hso).1 hxs, hs
/-- A T₁ space, also known as a Fréchet space, is a topological space
where every singleton set is closed. Equivalently, for every pair
`x y`, there is an open set containing `x` and not `y`. -/
class t1_space (α : Type u) [topological_space α] : Prop :=
(t1 : ∀x, is_closed ({x} : set α))
lemma is_closed_singleton [t1_space α] {x : α} : is_closed ({x} : set α) :=
t1_space.t1 x
lemma is_open_compl_singleton [t1_space α] {x : α} : is_open ({x}ᶜ : set α) :=
is_closed_singleton.is_open_compl
lemma is_open_ne [t1_space α] {x : α} : is_open {y | y x} :=
is_open_compl_singleton
lemma ne.nhds_within_compl_singleton [t1_space α] {x y : α} (h : x y) :
𝓝[{y}ᶜ] x = 𝓝 x :=
is_open_ne.nhds_within_eq h
lemma ne.nhds_within_diff_singleton [t1_space α] {x y : α} (h : x y) (s : set α) :
𝓝[s \ {y}] x = 𝓝[s] x :=
begin
rw [diff_eq, inter_comm, nhds_within_inter_of_mem],
exact mem_nhds_within_of_mem_nhds (is_open_ne.mem_nhds h)
end
protected lemma set.finite.is_closed [t1_space α] {s : set α} (hs : set.finite s) :
is_closed s :=
begin
rw bUnion_of_singleton s,
exact is_closed_bUnion hs (λ i hi, is_closed_singleton)
end
lemma topological_space.is_topological_basis.exists_mem_of_ne
[t1_space α] {b : set (set α)} (hb : is_topological_basis b) {x y : α} (h : x y) :
a b, x a y a :=
begin
rcases hb.is_open_iff.1 is_open_ne x h with a, ab, xa, ha,
exact a, ab, xa, λ h, ha h rfl,
end
lemma filter.coclosed_compact_le_cofinite [t1_space α] :
filter.coclosed_compact α filter.cofinite :=
λ s hs, compl_compl s hs.is_compact.compl_mem_coclosed_compact_of_is_closed hs.is_closed
variable (α)
/-- In a `t1_space`, relatively compact sets form a bornology. Its cobounded filter is
`filter.coclosed_compact`. See also `bornology.in_compact` the bornology of sets contained
in a compact set. -/
def bornology.relatively_compact [t1_space α] : bornology α :=
{ cobounded := filter.coclosed_compact α,
le_cofinite := filter.coclosed_compact_le_cofinite }
variable {α}
lemma bornology.relatively_compact.is_bounded_iff [t1_space α] {s : set α} :
@bornology.is_bounded _ (bornology.relatively_compact α) s is_compact (closure s) :=
begin
change sᶜ filter.coclosed_compact α _,
rw filter.mem_coclosed_compact,
split,
{ rintros t, ht₁, ht₂, hst,
rw compl_subset_compl at hst,
exact compact_of_is_closed_subset ht₂ is_closed_closure (closure_minimal hst ht₁) },
{ intros h,
exact closure s, is_closed_closure, h, compl_subset_compl.mpr subset_closure }
end
protected lemma finset.is_closed [t1_space α] (s : finset α) : is_closed (s : set α) :=
s.finite_to_set.is_closed
lemma t1_space_tfae (α : Type u) [topological_space α] :
tfae [t1_space α,
x, is_closed ({x} : set α),
x, is_open ({x}ᶜ : set α),
continuous (@cofinite_topology.of α),
x y : α, x y {y}ᶜ 𝓝 x,
x y : α, x y s 𝓝 x, y s,
x y : α, x y (U : set α) (hU : is_open U), x U y U,
x y : α, x y disjoint (𝓝 x) (pure y),
x y : α, x y disjoint (pure x) (𝓝 y),
x y : α, x y x = y] :=
begin
tfae_have : 1 2, from λ h, h.1, λ h, h⟩⟩,
tfae_have : 2 3, by simp only [is_open_compl_iff],
tfae_have : 5 3,
{ refine forall_swap.trans _,
simp only [is_open_iff_mem_nhds, mem_compl_iff, mem_singleton_iff] },
tfae_have : 5 6,
by simp only [ subset_compl_singleton_iff, exists_mem_subset_iff],
tfae_have : 5 7,
by simp only [(nhds_basis_opens _).mem_iff, subset_compl_singleton_iff, exists_prop, and.assoc,
and.left_comm],
tfae_have : 5 8,
by simp only [ principal_singleton, disjoint_principal_right],
tfae_have : 8 9, from forall_swap.trans (by simp only [disjoint.comm, ne_comm]),
tfae_have : 1 4,
{ simp only [continuous_def, cofinite_topology.is_open_iff'],
rintro H s (rfl|hs),
exacts [is_open_empty, compl_compl s (@set.finite.is_closed _ _ H _ hs).is_open_compl] },
tfae_have : 4 2,
from λ h x, (cofinite_topology.is_closed_iff.2 $ or.inr (finite_singleton _)).preimage h,
tfae_have : 2 10,
{ simp only [ closure_subset_iff_is_closed, specializes_iff_mem_closure, subset_def,
mem_singleton_iff, eq_comm] },
tfae_finish
end
lemma t1_space_iff_continuous_cofinite_of {α : Type*} [topological_space α] :
t1_space α continuous (@cofinite_topology.of α) :=
(t1_space_tfae α).out 0 3
lemma cofinite_topology.continuous_of [t1_space α] : continuous (@cofinite_topology.of α) :=
t1_space_iff_continuous_cofinite_of.mp _
lemma t1_space_iff_exists_open : t1_space α
(x y), x y ( (U : set α) (hU : is_open U), x U y U) :=
(t1_space_tfae α).out 0 6
lemma t1_space_iff_disjoint_pure_nhds : t1_space α x y : α, x y disjoint (pure x) (𝓝 y) :=
(t1_space_tfae α).out 0 8
lemma t1_space_iff_disjoint_nhds_pure : t1_space α x y : α, x y disjoint (𝓝 x) (pure y) :=
(t1_space_tfae α).out 0 7
lemma t1_space_iff_specializes_imp_eq : t1_space α x y : α, x y x = y :=
(t1_space_tfae α).out 0 9
lemma disjoint_pure_nhds [t1_space α] {x y : α} (h : x y) : disjoint (pure x) (𝓝 y) :=
t1_space_iff_disjoint_pure_nhds.mp _ h
lemma disjoint_nhds_pure [t1_space α] {x y : α} (h : x y) : disjoint (𝓝 x) (pure y) :=
t1_space_iff_disjoint_nhds_pure.mp _ h
lemma specializes.eq [t1_space α] {x y : α} (h : x y) : x = y :=
t1_space_iff_specializes_imp_eq.1 _ h
@[simp] lemma specializes_iff_eq [t1_space α] {x y : α} : x y x = y :=
specializes.eq, λ h, h specializes_rfl
instance {α : Type*} : t1_space (cofinite_topology α) :=
t1_space_iff_continuous_cofinite_of.mpr continuous_id
lemma t1_space_antitone {α : Type*} : antitone (@t1_space α) :=
begin
simp only [antitone, t1_space_iff_continuous_cofinite_of, continuous_iff_le_induced],
exact λ t₁ t₂ h, h.trans
end
lemma continuous_within_at_update_of_ne [t1_space α] [decidable_eq α] [topological_space β]
{f : α β} {s : set α} {x y : α} {z : β} (hne : y x) :
continuous_within_at (function.update f x z) s y continuous_within_at f s y :=
eventually_eq.congr_continuous_within_at
(mem_nhds_within_of_mem_nhds $ mem_of_superset (is_open_ne.mem_nhds hne) $
λ y' hy', function.update_noteq hy' _ _)
(function.update_noteq hne _ _)
lemma continuous_at_update_of_ne [t1_space α] [decidable_eq α] [topological_space β]
{f : α β} {x y : α} {z : β} (hne : y x) :
continuous_at (function.update f x z) y continuous_at f y :=
by simp only [ continuous_within_at_univ, continuous_within_at_update_of_ne hne]
lemma continuous_on_update_iff [t1_space α] [decidable_eq α] [topological_space β]
{f : α β} {s : set α} {x : α} {y : β} :
continuous_on (function.update f x y) s
continuous_on f (s \ {x}) (x s tendsto f (𝓝[s \ {x}] x) (𝓝 y)) :=
begin
rw [continuous_on, and_forall_ne x, and_comm],
refine and_congr λ H z hz, _, λ H z hzx hzs, _ (forall_congr $ λ hxs, _),
{ specialize H z hz.2 hz.1,
rw continuous_within_at_update_of_ne hz.2 at H,
exact H.mono (diff_subset _ _) },
{ rw continuous_within_at_update_of_ne hzx,
refine (H z hzs, hzx).mono_of_mem (inter_mem_nhds_within _ _),
exact is_open_ne.mem_nhds hzx },
{ exact continuous_within_at_update_same }
end
lemma t1_space_of_injective_of_continuous [topological_space β] {f : α β}
(hf : function.injective f) (hf' : continuous f) [t1_space β] : t1_space α :=
t1_space_iff_specializes_imp_eq.2 $ λ x y h, hf (h.map hf').eq
protected lemma embedding.t1_space [topological_space β] [t1_space β] {f : α β}
(hf : embedding f) : t1_space α :=
t1_space_of_injective_of_continuous hf.inj hf.continuous
instance subtype.t1_space {α : Type u} [topological_space α] [t1_space α] {p : α Prop} :
t1_space (subtype p) :=
embedding_subtype_coe.t1_space
instance [topological_space β] [t1_space α] [t1_space β] : t1_space (α × β) :=
λ a, b, @singleton_prod_singleton _ _ a b is_closed_singleton.prod is_closed_singleton
instance {ι : Type*} {π : ι Type*} [Π i, topological_space (π i)] [Π i, t1_space (π i)] :
t1_space (Π i, π i) :=
λ f, univ_pi_singleton f is_closed_set_pi (λ i hi, is_closed_singleton)
@[priority 100] -- see Note [lower instance priority]
instance t1_space.t0_space [t1_space α] : t0_space α := λ x y h, h.specializes.eq
@[simp] lemma compl_singleton_mem_nhds_iff [t1_space α] {x y : α} : {x}ᶜ 𝓝 y y x :=
is_open_compl_singleton.mem_nhds_iff
lemma compl_singleton_mem_nhds [t1_space α] {x y : α} (h : y x) : {x}ᶜ 𝓝 y :=
compl_singleton_mem_nhds_iff.mpr h
@[simp] lemma closure_singleton [t1_space α] {a : α} :
closure ({a} : set α) = {a} :=
is_closed_singleton.closure_eq
lemma set.subsingleton.closure [t1_space α] {s : set α} (hs : s.subsingleton) :
(closure s).subsingleton :=
hs.induction_on (by simp) $ λ x, by simp
@[simp] lemma subsingleton_closure [t1_space α] {s : set α} :
(closure s).subsingleton s.subsingleton :=
λ h, h.mono subset_closure, λ h, h.closure
lemma is_closed_map_const {α β} [topological_space α] [topological_space β] [t1_space β] {y : β} :
is_closed_map (function.const α y) :=
is_closed_map.of_nonempty $ λ s hs h2s, by simp_rw [h2s.image_const, is_closed_singleton]
lemma bInter_basis_nhds [t1_space α] {ι : Sort*} {p : ι Prop} {s : ι set α} {x : α}
(h : (𝓝 x).has_basis p s) : ( i (h : p i), s i) = {x} :=
begin
simp only [eq_singleton_iff_unique_mem, mem_Inter],
refine λ i hi, mem_of_mem_nhds $ h.mem_of_mem hi, λ y hy, _,
contrapose! hy,
rcases h.mem_iff.1 (compl_singleton_mem_nhds hy.symm) with i, hi, hsub,
exact i, hi, λ h, hsub h rfl
end
@[simp] lemma pure_le_nhds_iff [t1_space α] {a b : α} : pure a 𝓝 b a = b :=
begin
refine λ h, _, λ h, h pure_le_nhds a,
by_contra hab,
simpa only [mem_pure, mem_compl_iff, mem_singleton, not_true] using
h (compl_singleton_mem_nhds $ ne.symm hab)
end
@[simp] lemma nhds_le_nhds_iff [t1_space α] {a b : α} : 𝓝 a 𝓝 b a = b :=
λ h, pure_le_nhds_iff.mp $ (pure_le_nhds a).trans h, λ h, h le_rfl
@[simp] lemma compl_singleton_mem_nhds_set_iff [t1_space α] {x : α} {s : set α} :
{x}ᶜ 𝓝ˢ s x s :=
by rwa [is_open_compl_singleton.mem_nhds_set, subset_compl_singleton_iff]
@[simp] lemma nhds_set_le_iff [t1_space α] {s t : set α} : 𝓝ˢ s 𝓝ˢ t s t :=
begin
refine _, λ h, monotone_nhds_set h,
simp_rw [filter.le_def], intros h x hx,
specialize h {x}ᶜ,
simp_rw [compl_singleton_mem_nhds_set_iff] at h,
by_contra hxt,
exact h hxt hx,
end
@[simp] lemma nhds_set_inj_iff [t1_space α] {s t : set α} : 𝓝ˢ s = 𝓝ˢ t s = t :=
by { simp_rw [le_antisymm_iff], exact and_congr nhds_set_le_iff nhds_set_le_iff }
lemma injective_nhds_set [t1_space α] : function.injective (𝓝ˢ : set α filter α) :=
λ s t hst, nhds_set_inj_iff.mp hst
lemma strict_mono_nhds_set [t1_space α] : strict_mono (𝓝ˢ : set α filter α) :=
monotone_nhds_set.strict_mono_of_injective injective_nhds_set
@[simp] lemma nhds_le_nhds_set [t1_space α] {s : set α} {x : α} : 𝓝 x 𝓝ˢ s x s :=
by rw [ nhds_set_singleton, nhds_set_le_iff, singleton_subset_iff]
/-- Removing a non-isolated point from a dense set, one still obtains a dense set. -/
lemma dense.diff_singleton [t1_space α] {s : set α} (hs : dense s) (x : α) [ne_bot (𝓝[] x)] :
dense (s \ {x}) :=
hs.inter_of_open_right (dense_compl_singleton x) is_open_compl_singleton
/-- Removing a finset from a dense set in a space without isolated points, one still
obtains a dense set. -/
lemma dense.diff_finset [t1_space α] [ (x : α), ne_bot (𝓝[] x)]
{s : set α} (hs : dense s) (t : finset α) :
dense (s \ t) :=
begin
induction t using finset.induction_on with x s hxs ih hd,
{ simpa using hs },
{ rw [finset.coe_insert, union_singleton, diff_diff],
exact ih.diff_singleton _, }
end
/-- Removing a finite set from a dense set in a space without isolated points, one still
obtains a dense set. -/
lemma dense.diff_finite [t1_space α] [ (x : α), ne_bot (𝓝[] x)]
{s : set α} (hs : dense s) {t : set α} (ht : t.finite) :
dense (s \ t) :=
begin
convert hs.diff_finset ht.to_finset,
exact (finite.coe_to_finset _).symm,
end
/-- If a function to a `t1_space` tends to some limit `b` at some point `a`, then necessarily
`b = f a`. -/
lemma eq_of_tendsto_nhds [topological_space β] [t1_space β] {f : α β} {a : α} {b : β}
(h : tendsto f (𝓝 a) (𝓝 b)) : f a = b :=
by_contra $ assume (hfa : f a b),
have fact₁ : {f a}ᶜ 𝓝 b := compl_singleton_mem_nhds hfa.symm,
have fact₂ : tendsto f (pure a) (𝓝 b) := h.comp (tendsto_id'.2 $ pure_le_nhds a),
fact₂ fact₁ (eq.refl $ f a)
/-- To prove a function to a `t1_space` is continuous at some point `a`, it suffices to prove that
`f` admits *some* limit at `a`. -/
lemma continuous_at_of_tendsto_nhds [topological_space β] [t1_space β] {f : α β} {a : α} {b : β}
(h : tendsto f (𝓝 a) (𝓝 b)) : continuous_at f a :=
show tendsto f (𝓝 a) (𝓝 $ f a), by rwa eq_of_tendsto_nhds h
lemma tendsto_const_nhds_iff [t1_space α] {l : filter α} [ne_bot l] {c d : α} :
tendsto (λ x, c) l (𝓝 d) c = d :=
by simp_rw [tendsto, filter.map_const, pure_le_nhds_iff]
/-- If the punctured neighborhoods of a point form a nontrivial filter, then any neighborhood is
infinite. -/
lemma infinite_of_mem_nhds {α} [topological_space α] [t1_space α] (x : α) [hx : ne_bot (𝓝[] x)]
{s : set α} (hs : s 𝓝 x) : set.infinite s :=
begin
intro hsf,
have A : {x} s, by simp only [singleton_subset_iff, mem_of_mem_nhds hs],
have B : is_closed (s \ {x}) := (hsf.subset (diff_subset _ _)).is_closed,
have C : (s \ {x})ᶜ 𝓝 x, from B.is_open_compl.mem_nhds (λ h, h.2 rfl),
have D : {x} 𝓝 x, by simpa only [ diff_eq, diff_diff_cancel_left A] using inter_mem hs C,
rwa [ mem_interior_iff_mem_nhds, interior_singleton] at D
end
lemma discrete_of_t1_of_finite {X : Type*} [topological_space X] [t1_space X] [fintype X] :
discrete_topology X :=
begin
apply singletons_open_iff_discrete.mp,
intros x,
rw [ is_closed_compl_iff],
exact (set.to_finite _).is_closed
end
lemma singleton_mem_nhds_within_of_mem_discrete {s : set α} [discrete_topology s]
{x : α} (hx : x s) :
{x} 𝓝[s] x :=
begin
have : ({x, hx} : set s) 𝓝 (x, hx : s), by simp [nhds_discrete],
simpa only [nhds_within_eq_map_subtype_coe hx, image_singleton]
using @image_mem_map _ _ _ (coe : s α) _ this
end
/-- The neighbourhoods filter of `x` within `s`, under the discrete topology, is equal to
the pure `x` filter (which is the principal filter at the singleton `{x}`.) -/
lemma nhds_within_of_mem_discrete {s : set α} [discrete_topology s] {x : α} (hx : x s) :
𝓝[s] x = pure x :=
le_antisymm (le_pure_iff.2 $ singleton_mem_nhds_within_of_mem_discrete hx) (pure_le_nhds_within hx)
lemma filter.has_basis.exists_inter_eq_singleton_of_mem_discrete
{ι : Type*} {p : ι Prop} {t : ι set α} {s : set α} [discrete_topology s] {x : α}
(hb : (𝓝 x).has_basis p t) (hx : x s) :
i (hi : p i), t i s = {x} :=
begin
rcases (nhds_within_has_basis hb s).mem_iff.1 (singleton_mem_nhds_within_of_mem_discrete hx)
with i, hi, hix,
exact i, hi, subset.antisymm hix $ singleton_subset_iff.2
mem_of_mem_nhds $ hb.mem_of_mem hi, hx⟩⟩
end
/-- A point `x` in a discrete subset `s` of a topological space admits a neighbourhood
that only meets `s` at `x`. -/
lemma nhds_inter_eq_singleton_of_mem_discrete {s : set α} [discrete_topology s]
{x : α} (hx : x s) :
U 𝓝 x, U s = {x} :=
by simpa using (𝓝 x).basis_sets.exists_inter_eq_singleton_of_mem_discrete hx
/-- For point `x` in a discrete subset `s` of a topological space, there is a set `U`
such that
1. `U` is a punctured neighborhood of `x` (ie. `U {x}` is a neighbourhood of `x`),
2. `U` is disjoint from `s`.
-/
lemma disjoint_nhds_within_of_mem_discrete {s : set α} [discrete_topology s] {x : α} (hx : x s) :
U 𝓝[] x, disjoint U s :=
let V, h, h' := nhds_inter_eq_singleton_of_mem_discrete hx in
{x}ᶜ V, inter_mem_nhds_within _ h,
(disjoint_iff_inter_eq_empty.mpr (by { rw [inter_assoc, h', compl_inter_self] }))
/-- Let `X` be a topological space and let `s, t X` be two subsets. If there is an inclusion
`t s`, then the topological space structure on `t` induced by `X` is the same as the one
obtained by the induced topological space structure on `s`. -/
lemma topological_space.subset_trans {X : Type*} [tX : topological_space X]
{s t : set X} (ts : t s) :
(subtype.topological_space : topological_space t) =
(subtype.topological_space : topological_space s).induced (set.inclusion ts) :=
begin
change tX.induced ((coe : s X) (set.inclusion ts)) =
topological_space.induced (set.inclusion ts) (tX.induced _),
rw induced_compose,
end
/-- This lemma characterizes discrete topological spaces as those whose singletons are
neighbourhoods. -/
lemma discrete_topology_iff_nhds {X : Type*} [topological_space X] :
discrete_topology X (nhds : X filter X) = pure :=
begin
split,
{ introI hX,
exact nhds_discrete X },
{ intro h,
constructor,
apply eq_of_nhds_eq_nhds,
simp [h, nhds_bot] }
end
/-- The topology pulled-back under an inclusion `f : X Y` from the discrete topology (``) is the
discrete topology.
This version does not assume the choice of a topology on either the source `X`
nor the target `Y` of the inclusion `f`. -/
lemma induced_bot {X Y : Type*} {f : X Y} (hf : function.injective f) :
topological_space.induced f = :=
eq_of_nhds_eq_nhds (by simp [nhds_induced, set.image_singleton, hf.preimage_image, nhds_bot])
/-- The topology induced under an inclusion `f : X Y` from the discrete topological space `Y`
is the discrete topology on `X`. -/
lemma discrete_topology_induced {X Y : Type*} [tY : topological_space Y] [discrete_topology Y]
{f : X Y} (hf : function.injective f) : @discrete_topology X (topological_space.induced f tY) :=
begin
constructor,
rw discrete_topology.eq_bot Y,
exact induced_bot hf
end
/-- Let `s, t X` be two subsets of a topological space `X`. If `t s` and the topology induced
by `X`on `s` is discrete, then also the topology induces on `t` is discrete. -/
lemma discrete_topology.of_subset {X : Type*} [topological_space X] {s t : set X}
(ds : discrete_topology s) (ts : t s) :
discrete_topology t :=
begin
rw [topological_space.subset_trans ts, ds.eq_bot],
exact {eq_bot := induced_bot (set.inclusion_injective ts)}
end
/-- A T₂ space, also known as a Hausdorff space, is one in which for every
`x y` there exists disjoint open sets around `x` and `y`. This is
the most widely used of the separation axioms. -/
@[mk_iff] class t2_space (α : Type u) [topological_space α] : Prop :=
(t2 : ∀ x y, xy → ∃ u v : set α, is_open uis_open vxuyvdisjoint u v)
/-- Two different points can be separated by open sets. -/
lemma t2_separation [t2_space α] {x y : α} (h : x y) :
u v : set α, is_open u is_open v x u y v disjoint u v :=
t2_space.t2 x y h
lemma t2_space_iff_disjoint_nhds : t2_space α x y : α, x y disjoint (𝓝 x) (𝓝 y) :=
begin
refine (t2_space_iff α).trans (forall₃_congr $ λ x y hne, _),
simp only [(nhds_basis_opens x).disjoint_iff (nhds_basis_opens y), exists_prop,
exists_and_distrib_left, and.assoc, and_comm, and.left_comm]
end
@[simp] lemma disjoint_nhds_nhds [t2_space α] {x y : α} : disjoint (𝓝 x) (𝓝 y) x y :=
λ hd he, by simpa [he, nhds_ne_bot.ne] using hd, t2_space_iff_disjoint_nhds.mp _ x y
/-- A finite set can be separated by open sets. -/
lemma t2_separation_finset [t2_space α] (s : finset α) :
f : α set α, set.pairwise_disjoint s f x s, x f x is_open (f x) :=
finset.induction_on s (by simp) begin
rintros t s ht f, hf, hf',
have hty : y : s, t y := by { rintros y rfl, exact ht y.2 },
choose u v hu hv htu hxv huv using λ {x} (h : t x), t2_separation h,
refine λ x, if ht : t = x then y : s, u (hty y) else f x v ht, _, _,
{ rintros x hx₁ y hy₁ hxy a hx, hy,
rw [finset.mem_coe, finset.mem_insert, eq_comm] at hx₁ hy₁,
rcases eq_or_ne t x with rfl | hx₂;
rcases eq_or_ne t y with rfl | hy₂,
{ exact hxy rfl },
{ simp_rw [dif_pos rfl, mem_Inter] at hx,
simp_rw [dif_neg hy₂] at hy,
exact huv hy₂ hx y, hy₁.resolve_left hy₂, hy.2 },
{ simp_rw [dif_neg hx₂] at hx,
simp_rw [dif_pos rfl, mem_Inter] at hy,
exact huv hx₂ hy x, hx₁.resolve_left hx₂, hx.2 },
{ simp_rw [dif_neg hx₂] at hx,
simp_rw [dif_neg hy₂] at hy,
exact hf (hx₁.resolve_left hx₂) (hy₁.resolve_left hy₂) hxy hx.1, hy.1 } },
{ intros x hx,
split_ifs with ht,
{ refine mem_Inter.2 (λ y, _), is_open_Inter (λ y, hu (hty y)),
rw ht,
exact htu (hty y) },
{ have hx := hf' x ((finset.mem_insert.1 hx).resolve_left (ne.symm ht)),
exact ⟨⟨hx.1, hxv ht, is_open.inter hx.2 (hv ht) } }
end
@[priority 100] -- see Note [lower instance priority]
instance t2_space.t1_space [t2_space α] : t1_space α :=
t1_space_iff_disjoint_pure_nhds.mpr $ λ x y hne, (disjoint_nhds_nhds.2 hne).mono_left $
pure_le_nhds _
/-- A space is T₂ iff the neighbourhoods of distinct points generate the bottom filter. -/
lemma t2_iff_nhds : t2_space α {x y : α}, ne_bot (𝓝 x 𝓝 y) x = y :=
by simp only [t2_space_iff_disjoint_nhds, disjoint_iff, ne_bot_iff, ne.def, not_imp_comm]
lemma eq_of_nhds_ne_bot [t2_space α] {x y : α} (h : ne_bot (𝓝 x 𝓝 y)) : x = y :=
t2_iff_nhds.mp _ h
lemma t2_space_iff_nhds : t2_space α {x y : α}, x y (U 𝓝 x) (V 𝓝 y), disjoint U V :=
by simp only [t2_space_iff_disjoint_nhds, filter.disjoint_iff]
lemma t2_separation_nhds [t2_space α] {x y : α} (h : x y) :
u v, u 𝓝 x v 𝓝 y disjoint u v :=
let u, v, open_u, open_v, x_in, y_in, huv := t2_separation h in
u, v, open_u.mem_nhds x_in, open_v.mem_nhds y_in, huv
lemma t2_separation_compact_nhds [locally_compact_space α] [t2_space α] {x y : α} (h : x y) :
u v, u 𝓝 x v 𝓝 y is_compact u is_compact v disjoint u v :=
by simpa only [exists_prop, exists_and_distrib_left, and_comm, and.assoc, and.left_comm]
using ((compact_basis_nhds x).disjoint_iff (compact_basis_nhds y)).1 (disjoint_nhds_nhds.2 h)
lemma t2_iff_ultrafilter :
t2_space α {x y : α} (f : ultrafilter α), f 𝓝 x f 𝓝 y x = y :=
t2_iff_nhds.trans $ by simp only [exists_ultrafilter_iff, and_imp, le_inf_iff, exists_imp_distrib]
lemma t2_iff_is_closed_diagonal : t2_space α is_closed (diagonal α) :=
by simp only [t2_space_iff_disjoint_nhds, is_open_compl_iff, is_open_iff_mem_nhds, prod.forall,
nhds_prod_eq, compl_diagonal_mem_prod, mem_compl_iff, mem_diagonal_iff]
lemma is_closed_diagonal [t2_space α] : is_closed (diagonal α) :=
t2_iff_is_closed_diagonal.mp _
section separated
open separated finset
lemma finset_disjoint_finset_opens_of_t2 [t2_space α] :
(s t : finset α), disjoint s t separated (s : set α) t :=
begin
refine induction_on_union _ (λ a b hi d, (hi d.symm).symm) (λ a d, empty_right a) (λ a b ab, _) _,
{ obtain U, V, oU, oV, aU, bV, UV := t2_separation (finset.disjoint_singleton.1 ab),
refine U, V, oU, oV, _, _, UV;
exact singleton_subset_set_iff.mpr _ },
{ intros a b c ac bc d,
apply_mod_cast union_left (ac (disjoint_of_subset_left (a.subset_union_left b) d)) (bc _),
exact disjoint_of_subset_left (a.subset_union_right b) d },
end
lemma point_disjoint_finset_opens_of_t2 [t2_space α] {x : α} {s : finset α} (h : x s) :
separated ({x} : set α) s :=
by exact_mod_cast finset_disjoint_finset_opens_of_t2 {x} s (finset.disjoint_singleton_left.mpr h)
end separated
lemma tendsto_nhds_unique [t2_space α] {f : β α} {l : filter β} {a b : α}
[ne_bot l] (ha : tendsto f l (𝓝 a)) (hb : tendsto f l (𝓝 b)) : a = b :=
eq_of_nhds_ne_bot $ ne_bot_of_le $ le_inf ha hb
lemma tendsto_nhds_unique' [t2_space α] {f : β α} {l : filter β} {a b : α}
(hl : ne_bot l) (ha : tendsto f l (𝓝 a)) (hb : tendsto f l (𝓝 b)) : a = b :=
eq_of_nhds_ne_bot $ ne_bot_of_le $ le_inf ha hb
lemma tendsto_nhds_unique_of_eventually_eq [t2_space α] {f g : β α} {l : filter β} {a b : α}
[ne_bot l] (ha : tendsto f l (𝓝 a)) (hb : tendsto g l (𝓝 b)) (hfg : f =ᶠ[l] g) :
a = b :=
tendsto_nhds_unique (ha.congr' hfg) hb
lemma tendsto_nhds_unique_of_frequently_eq [t2_space α] {f g : β α} {l : filter β} {a b : α}
(ha : tendsto f l (𝓝 a)) (hb : tendsto g l (𝓝 b)) (hfg : ᶠ x in l, f x = g x) :
a = b :=
have ᶠ z : α × α in 𝓝 (a, b), z.1 = z.2 := (ha.prod_mk_nhds hb).frequently hfg,
not_not.1 $ λ hne, this (is_closed_diagonal.is_open_compl.mem_nhds hne)
/-- A T₂.₅ space, also known as a Urysohn space, is a topological space
where for every pair `x y`, there are two open sets, with the intersection of closures
empty, one containing `x` and the other `y` . -/
class t2_5_space (α : Type u) [topological_space α]: Prop :=
(t2_5 : ∀ x y (h : xy), ∃ (U V: set α), is_open Uis_open V
disjoint (closure U) (closure V) ∧ xUyV)
@[priority 100] -- see Note [lower instance priority]
instance t2_5_space.t2_space [t2_5_space α] : t2_space α :=
⟨λ x y hxy,
letU, V, hU, hV, hUV, hh⟩ := t2_5_space.t2_5 x y hxy in
U, V, hU, hV, hh.1, hh.2, hUV.mono subset_closure subset_closure⟩⟩
section lim
variables [t2_space α] {f : filter α}
/-!
### Properties of `Lim` and `lim`
In this section we use explicit `nonempty α` instances for `Lim` and `lim`. This way the lemmas
are useful without a `nonempty α` instance.
-/
lemma Lim_eq {a : α} [ne_bot f] (h : f 𝓝 a) :
@Lim _ _ a f = a :=
tendsto_nhds_unique (le_nhds_Lim a, h) h
lemma Lim_eq_iff [ne_bot f] (h : (a : α), f nhds a) {a} : @Lim _ _ a f = a f 𝓝 a :=
λ c, c le_nhds_Lim h, Lim_eq
lemma ultrafilter.Lim_eq_iff_le_nhds [compact_space α] {x : α} {F : ultrafilter α} :
F.Lim = x F 𝓝 x :=
λ h, h F.le_nhds_Lim, Lim_eq
lemma is_open_iff_ultrafilter' [compact_space α] (U : set α) :
is_open U ( F : ultrafilter α, F.Lim U U F.1) :=
begin
rw is_open_iff_ultrafilter,
refine λ h F hF, h F.Lim hF F F.le_nhds_Lim, _,
intros cond x hx f h,
rw [ (ultrafilter.Lim_eq_iff_le_nhds.2 h)] at hx,
exact cond _ hx
end
lemma filter.tendsto.lim_eq {a : α} {f : filter β} [ne_bot f] {g : β α} (h : tendsto g f (𝓝 a)) :
@lim _ _ _ a f g = a :=
Lim_eq h
lemma filter.lim_eq_iff {f : filter β} [ne_bot f] {g : β α} (h : a, tendsto g f (𝓝 a)) {a} :
@lim _ _ _ a f g = a tendsto g f (𝓝 a) :=
λ c, c tendsto_nhds_lim h, filter.tendsto.lim_eq
lemma continuous.lim_eq [topological_space β] {f : β α} (h : continuous f) (a : β) :
@lim _ _ _ f a (𝓝 a) f = f a :=
(h.tendsto a).lim_eq
@[simp] lemma Lim_nhds (a : α) : @Lim _ _ a (𝓝 a) = a :=
Lim_eq le_rfl
@[simp] lemma lim_nhds_id (a : α) : @lim _ _ _ a (𝓝 a) id = a :=
Lim_nhds a
@[simp] lemma Lim_nhds_within {a : α} {s : set α} (h : a closure s) :
@Lim _ _ a (𝓝[s] a) = a :=
by haveI : ne_bot (𝓝[s] a) := mem_closure_iff_cluster_pt.1 h;
exact Lim_eq inf_le_left
@[simp] lemma lim_nhds_within_id {a : α} {s : set α} (h : a closure s) :
@lim _ _ _ a (𝓝[s] a) id = a :=
Lim_nhds_within h
end lim
/-!
### `t2_space` constructions
We use two lemmas to prove that various standard constructions generate Hausdorff spaces from
Hausdorff spaces:
* `separated_by_continuous` says that two points `x y : α` can be separated by open neighborhoods
provided that there exists a continuous map `f : α β` with a Hausdorff codomain such that
`f x f y`. We use this lemma to prove that topological spaces defined using `induced` are
Hausdorff spaces.
* `separated_by_open_embedding` says that for an open embedding `f : α β` of a Hausdorff space
`α`, the images of two distinct points `x y : α`, `x y` can be separated by open neighborhoods.
We use this lemma to prove that topological spaces defined using `coinduced` are Hausdorff spaces.
-/
@[priority 100] -- see Note [lower instance priority]
instance discrete_topology.to_t2_space {α : Type*} [topological_space α] [discrete_topology α] :
t2_space α :=
λ x y h, {x}, {y}, is_open_discrete _, is_open_discrete _, rfl, rfl, disjoint_singleton.2 h⟩⟩
lemma separated_by_continuous {α : Type*} {β : Type*}
[topological_space α] [topological_space β] [t2_space β]
{f : α β} (hf : continuous f) {x y : α} (h : f x f y) :
u v : set α, is_open u is_open v x u y v disjoint u v :=
let u, v, uo, vo, xu, yv, uv := t2_separation h in
f ⁻¹' u, f ⁻¹' v, uo.preimage hf, vo.preimage hf, xu, yv, uv.preimage _
lemma separated_by_open_embedding {α β : Type*} [topological_space α] [topological_space β]
[t2_space α] {f : α β} (hf : open_embedding f) {x y : α} (h : x y) :
u v : set β, is_open u is_open v f x u f y v disjoint u v :=
let u, v, uo, vo, xu, yv, uv := t2_separation h in
f '' u, f '' v, hf.is_open_map _ uo, hf.is_open_map _ vo,
mem_image_of_mem _ xu, mem_image_of_mem _ yv, disjoint_image_of_injective hf.inj uv
instance {α : Type*} {p : α Prop} [t : topological_space α] [t2_space α] : t2_space (subtype p) :=
assume x y h, separated_by_continuous continuous_subtype_val (mt subtype.eq h)
instance {α : Type*} {β : Type*} [t₁ : topological_space α] [t2_space α]
[t₂ : topological_space β] [t2_space β] : t2_space (α × β) :=
assume x₁,x₂ y₁,y₂ h,
or.elim (not_and_distrib.mp (mt prod.ext_iff.mpr h))
(λ h₁, separated_by_continuous continuous_fst h₁)
(λ h₂, separated_by_continuous continuous_snd h₂)
lemma embedding.t2_space [topological_space β] [t2_space β] {f : α β} (hf : embedding f) :
t2_space α :=
λ x y h, separated_by_continuous hf.continuous (hf.inj.ne h)
instance {α : Type*} {β : Type*} [t₁ : topological_space α] [t2_space α]
[t₂ : topological_space β] [t2_space β] : t2_space (α β) :=
begin
constructor,
rintros (x|x) (y|y) h,
{ replace h : x y := λ c, (c.subst h) rfl,
exact separated_by_open_embedding open_embedding_inl h },
{ exact _, _, is_open_range_inl, is_open_range_inr, x, rfl, y, rfl,
is_compl_range_inl_range_inr.disjoint },
{ exact _, _, is_open_range_inr, is_open_range_inl, x, rfl, y, rfl,
is_compl_range_inl_range_inr.disjoint.symm },
{ replace h : x y := λ c, (c.subst h) rfl,
exact separated_by_open_embedding open_embedding_inr h }
end
instance Pi.t2_space {α : Type*} {β : α Type v} [t₂ : Πa, topological_space (β a)]
[a, t2_space (β a)] :
t2_space (Πa, β a) :=
assume x y h,
let i, hi := not_forall.mp (mt funext h) in
separated_by_continuous (continuous_apply i) hi
instance sigma.t2_space {ι : Type*} {α : ι Type*} [Πi, topological_space (α i)]
[a, t2_space (α a)] :
t2_space (Σi, α i) :=
begin
constructor,
rintros i, x j, y neq,
rcases em (i = j) with (rfl|h),
{ replace neq : x y := λ c, (c.subst neq) rfl,
exact separated_by_open_embedding open_embedding_sigma_mk neq },
{ exact _, _, is_open_range_sigma_mk, is_open_range_sigma_mk, x, rfl, y, rfl, by tidy }
end
variables [topological_space β]
lemma is_closed_eq [t2_space α] {f g : β α}
(hf : continuous f) (hg : continuous g) : is_closed {x:β | f x = g x} :=
continuous_iff_is_closed.mp (hf.prod_mk hg) _ is_closed_diagonal
lemma is_open_ne_fun [t2_space α] {f g : β α}
(hf : continuous f) (hg : continuous g) : is_open {x:β | f x g x} :=
is_open_compl_iff.mpr $ is_closed_eq hf hg
/-- If two continuous maps are equal on `s`, then they are equal on the closure of `s`. See also
`set.eq_on.of_subset_closure` for a more general version. -/
lemma set.eq_on.closure [t2_space α] {s : set β} {f g : β α} (h : eq_on f g s)
(hf : continuous f) (hg : continuous g) :
eq_on f g (closure s) :=
closure_minimal h (is_closed_eq hf hg)
/-- If two continuous functions are equal on a dense set, then they are equal. -/
lemma continuous.ext_on [t2_space α] {s : set β} (hs : dense s) {f g : β α}
(hf : continuous f) (hg : continuous g) (h : eq_on f g s) :
f = g :=
funext $ λ x, h.closure hf hg (hs x)
/-- If `f x = g x` for all `x s` and `f`, `g` are continuous on `t`, `s t closure s`, then
`f x = g x` for all `x t`. See also `set.eq_on.closure`. -/
lemma set.eq_on.of_subset_closure [t2_space α] {s t : set β} {f g : β α} (h : eq_on f g s)
(hf : continuous_on f t) (hg : continuous_on g t) (hst : s t) (hts : t closure s) :
eq_on f g t :=
begin
intros x hx,
haveI : (𝓝[s] x).ne_bot, from mem_closure_iff_cluster_pt.mp (hts hx),
exact tendsto_nhds_unique_of_eventually_eq ((hf x hx).mono_left $ nhds_within_mono _ hst)
((hg x hx).mono_left $ nhds_within_mono _ hst) (h.eventually_eq_of_mem self_mem_nhds_within)
end
lemma function.left_inverse.closed_range [t2_space α] {f : α β} {g : β α}
(h : function.left_inverse f g) (hf : continuous f) (hg : continuous g) :
is_closed (range g) :=
have eq_on (g f) id (closure $ range g),
from h.right_inv_on_range.eq_on.closure (hg.comp hf) continuous_id,
is_closed_of_closure_subset $ λ x hx,
calc x = g (f x) : (this hx).symm
... _ : mem_range_self _
lemma function.left_inverse.closed_embedding [t2_space α] {f : α β} {g : β α}
(h : function.left_inverse f g) (hf : continuous f) (hg : continuous g) :
closed_embedding g :=
h.embedding hf hg, h.closed_range hf hg
lemma compact_compact_separated [t2_space α] {s t : set α}
(hs : is_compact s) (ht : is_compact t) (hst : disjoint s t) :
u v, is_open u is_open v s u t v disjoint u v :=
by simp only [prod_subset_compl_diagonal_iff_disjoint.symm] at hst;
exact generalized_tube_lemma hs ht is_closed_diagonal.is_open_compl hst
/-- In a `t2_space`, every compact set is closed. -/
lemma is_compact.is_closed [t2_space α] {s : set α} (hs : is_compact s) : is_closed s :=
is_open_compl_iff.1 $ is_open_iff_forall_mem_open.mpr $ assume x hx,
let u, v, uo, vo, su, xv, uv :=
compact_compact_separated hs is_compact_singleton (disjoint_singleton_right.2 hx) in
v, (uv.mono_left $ show s u, from su).subset_compl_left, vo, by simpa using xv
@[simp] lemma filter.coclosed_compact_eq_cocompact [t2_space α] :
coclosed_compact α = cocompact α :=
by simp [coclosed_compact, cocompact, infi_and', and_iff_right_of_imp is_compact.is_closed]
@[simp] lemma bornology.relatively_compact_eq_in_compact [t2_space α] :
bornology.relatively_compact α = bornology.in_compact α :=
by rw bornology.ext_iff; exact filter.coclosed_compact_eq_cocompact
/-- If `V : ι set α` is a decreasing family of compact sets then any neighborhood of
` i, V i` contains some `V i`. This is a version of `exists_subset_nhd_of_compact'` where we
don't need to assume each `V i` closed because it follows from compactness since `α` is
assumed to be Hausdorff. -/
lemma exists_subset_nhd_of_compact [t2_space α] {ι : Type*} [nonempty ι] {V : ι set α}
(hV : directed () V) (hV_cpct : i, is_compact (V i)) {U : set α}
(hU : x i, V i, U 𝓝 x) : i, V i U :=
exists_subset_nhd_of_compact' hV hV_cpct (λ i, (hV_cpct i).is_closed) hU
lemma compact_exhaustion.is_closed [t2_space α] (K : compact_exhaustion α) (n : ℕ) :
is_closed (K n) :=
(K.is_compact n).is_closed
lemma is_compact.inter [t2_space α] {s t : set α} (hs : is_compact s) (ht : is_compact t) :
is_compact (s t) :=
hs.inter_right $ ht.is_closed
lemma compact_closure_of_subset_compact [t2_space α] {s t : set α} (ht : is_compact t) (h : s t) :
is_compact (closure s) :=
compact_of_is_closed_subset ht is_closed_closure (closure_minimal h ht.is_closed)
@[simp]
lemma exists_compact_superset_iff [t2_space α] {s : set α} :
( K, is_compact K s K) is_compact (closure s) :=
λ K, hK, hsK, compact_closure_of_subset_compact hK hsK, λ h, closure s, h, subset_closure⟩⟩
lemma image_closure_of_compact [t2_space β]
{s : set α} (hs : is_compact (closure s)) {f : α β} (hf : continuous_on f (closure s)) :
f '' closure s = closure (f '' s) :=
subset.antisymm hf.image_closure $ closure_minimal (image_subset f subset_closure)
(hs.image_of_continuous_on hf).is_closed
/-- If a compact set is covered by two open sets, then we can cover it by two compact subsets. -/
lemma is_compact.binary_compact_cover [t2_space α] {K U V : set α} (hK : is_compact K)
(hU : is_open U) (hV : is_open V) (h2K : K U V) :
K₁ K₂ : set α, is_compact K₁ is_compact K₂ K₁ U K₂ V K = K₁ K₂ :=
begin
obtain O₁, O₂, h1O₁, h1O₂, h2O₁, h2O₂, hO := compact_compact_separated (hK.diff hU) (hK.diff hV)
(by rwa [disjoint_iff_inter_eq_empty, diff_inter_diff, diff_eq_empty]),
exact _, _, hK.diff h1O₁, hK.diff h1O₂, by rwa [diff_subset_comm], by rwa [diff_subset_comm],
by rw [ diff_inter, hO.inter_eq, diff_empty]
end
lemma continuous.is_closed_map [compact_space α] [t2_space β] {f : α β} (h : continuous f) :
is_closed_map f :=
λ s hs, (hs.is_compact.image h).is_closed
lemma continuous.closed_embedding [compact_space α] [t2_space β] {f : α β} (h : continuous f)
(hf : function.injective f) : closed_embedding f :=
closed_embedding_of_continuous_injective_closed h hf h.is_closed_map
section
open finset function
/-- For every finite open cover `Uᵢ` of a compact set, there exists a compact cover `Kᵢ Uᵢ`. -/
lemma is_compact.finite_compact_cover [t2_space α] {s : set α} (hs : is_compact s)
{ι} (t : finset ι) (U : ι set α) (hU : i t, is_open (U i)) (hsC : s i t, U i) :
K : ι set α, ( i, is_compact (K i)) (i, K i U i) s = i t, K i :=
begin
classical,
induction t using finset.induction with x t hx ih generalizing U hU s hs hsC,
{ refine λ _, , λ i, is_compact_empty, λ i, empty_subset _, _,
simpa only [subset_empty_iff, Union_false, Union_empty] using hsC },
simp only [finset.set_bUnion_insert] at hsC,
simp only [finset.mem_insert] at hU,
have hU' : i t, is_open (U i) := λ i hi, hU i (or.inr hi),
rcases hs.binary_compact_cover (hU x (or.inl rfl)) (is_open_bUnion hU') hsC
with K₁, K₂, h1K₁, h1K₂, h2K₁, h2K₂, hK,
rcases ih U hU' h1K₂ h2K₂ with K, h1K, h2K, h3K,
refine update K x K₁, _, _, _,
{ intros i, by_cases hi : i = x,
{ simp only [update_same, hi, h1K₁] },
{ rw [ ne.def] at hi, simp only [update_noteq hi, h1K] }},
{ intros i, by_cases hi : i = x,
{ simp only [update_same, hi, h2K₁] },
{ rw [ ne.def] at hi, simp only [update_noteq hi, h2K] }},
{ simp only [set_bUnion_insert_update _ hx, hK, h3K] }
end
end
lemma locally_compact_of_compact_nhds [t2_space α] (h : x : α, s, s 𝓝 x is_compact s) :
locally_compact_space α :=
assume x n hn,
let u, un, uo, xu := mem_nhds_iff.mp hn in
let k, kx, kc := h x in
-- K is compact but not necessarily contained in N.
-- K \ U is again compact and doesn't contain x, so
-- we may find open sets V, W separating x from K \ U.
-- Then K \ W is a compact neighborhood of x contained in U.
let v, w, vo, wo, xv, kuw, vw := compact_compact_separated is_compact_singleton (kc.diff uo)
(disjoint_singleton_left.2 $ λ h, h.2 xu) in
have wn : wᶜ 𝓝 x, from
mem_nhds_iff.mpr v, vw.subset_compl_right, vo, singleton_subset_iff.mp xv,
k \ w,
filter.inter_mem kx wn,
subset.trans (diff_subset_comm.mp kuw) un,
kc.diff wo⟩⟩
@[priority 100] -- see Note [lower instance priority]
instance locally_compact_of_compact [t2_space α] [compact_space α] : locally_compact_space α :=
locally_compact_of_compact_nhds (assume x, univ, is_open_univ.mem_nhds trivial, compact_univ)
/-- In a locally compact T₂ space, every point has an open neighborhood with compact closure -/
lemma exists_open_with_compact_closure [locally_compact_space α] [t2_space α] (x : α) :
(U : set α), is_open U x U is_compact (closure U) :=
begin
rcases exists_compact_mem_nhds x with K, hKc, hxK,
rcases mem_nhds_iff.1 hxK with t, h1t, h2t, h3t,
exact t, h2t, h3t, compact_closure_of_subset_compact hKc h1t
end
/--
In a locally compact T₂ space, every compact set has an open neighborhood with compact closure.
-/
lemma exists_open_superset_and_is_compact_closure [locally_compact_space α] [t2_space α]
{K : set α} (hK : is_compact K) : V, is_open V K V is_compact (closure V) :=
begin
rcases exists_compact_superset hK with K', hK', hKK',
refine interior K', is_open_interior, hKK',
compact_closure_of_subset_compact hK' interior_subset,
end
lemma is_preirreducible_iff_subsingleton [t2_space α] (S : set α) :
is_preirreducible S S.subsingleton :=
begin
refine λ h x hx y hy, _, set.subsingleton.is_preirreducible,
by_contradiction e,
obtain U, V, hU, hV, hxU, hyV, h' := t2_separation e,
exact ((h U V hU hV x, hx, hxU y, hy, hyV).mono $ inter_subset_right _ _).not_disjoint h',
end
lemma is_irreducible_iff_singleton [t2_space α] (S : set α) :
is_irreducible S x, S = {x} :=
by rw [is_irreducible, is_preirreducible_iff_subsingleton,
exists_eq_singleton_iff_nonempty_subsingleton]
end separation
section t3
/-- A T₃ space is a T₀ space in which for every closed `C` and `x C`, there exist
disjoint open sets containing `x` and `C` respectively. -/
class t3_space (α : Type u) [topological_space α] extends t0_space α : Prop :=
(regular : ∀{s:set α} {a}, is_closed s a s t, is_open t s t 𝓝[t] a = )
@[priority 100] -- see Note [lower instance priority]
instance t3_space.t1_space [t3_space α] : t1_space α :=
begin
rw t1_space_iff_exists_open,
intros x y hxy,
obtain U, hU, h := exists_is_open_xor_mem hxy,
cases h,
{ exact U, hU, h },
{ obtain R, hR, hh := t3_space.regular (is_closed_compl_iff.mpr hU) (not_not.mpr h.1),
obtain V, hV, hhh := mem_nhds_iff.1 (filter.inf_principal_eq_bot.1 hh.2),
exact R, hR, hh.1 (mem_compl h.2), hV hhh.2 }
end
lemma nhds_is_closed [t3_space α] {a : α} {s : set α} (h : s 𝓝 a) :
t 𝓝 a, t s is_closed t :=
let s', h₁, h₂, h₃ := mem_nhds_iff.mp h in
have t, is_open t s'ᶜ t 𝓝[t] a = ,
from t3_space.regular h₂.is_closed_compl (not_not_intro h₃),
let t, ht₁, ht₂, ht₃ := this in
tᶜ,
mem_of_eq_bot $ by rwa [compl_compl],
subset.trans (compl_subset_comm.1 ht₂) h₁,
is_closed_compl_iff.mpr ht₁
lemma closed_nhds_basis [t3_space α] (a : α) :
(𝓝 a).has_basis (λ s : set α, s 𝓝 a is_closed s) id :=
λ t, λ t_in, let s, s_in, h_st, h := nhds_is_closed t_in in s, s_in, h, h_st,
λ s, s_in, hs, hst, mem_of_superset s_in hst⟩⟩
lemma topological_space.is_topological_basis.exists_closure_subset [t3_space α]
{B : set (set α)} (hB : topological_space.is_topological_basis B) {a : α} {s : set α}
(h : s 𝓝 a) :
t B, a t closure t s :=
begin
rcases nhds_is_closed h with t, hat, hts, htc,
rcases hB.mem_nhds_iff.1 hat with u, huB, hau, hut,
exact u, huB, hau, (closure_minimal hut htc).trans hts
end
lemma topological_space.is_topological_basis.nhds_basis_closure [t3_space α]
{B : set (set α)} (hB : topological_space.is_topological_basis B) (a : α) :
(𝓝 a).has_basis (λ s : set α, a s s B) closure :=
λ s, λ h, let t, htB, hat, hts := hB.exists_closure_subset h in t, hat, htB, hts,
λ t, hat, htB, hts, mem_of_superset (hB.mem_nhds htB hat) (subset_closure.trans hts)⟩⟩
protected lemma embedding.t3_space [topological_space β] [t3_space β] {f : α β}
(hf : embedding f) : t3_space α :=
{ to_t0_space := hf.t0_space,
regular :=
begin
intros s a hs ha,
rcases hf.to_inducing.is_closed_iff.1 hs with s, hs', rfl,
rcases t3_space.regular hs' ha with t, ht, hst, hat,
refine f ⁻¹' t, ht.preimage hf.continuous, preimage_mono hst, _,
rw [nhds_within, hf.to_inducing.nhds_eq_comap, comap_principal, comap_inf,
nhds_within, hat, comap_bot]
end }
instance subtype.t3_space [t3_space α] {p : α Prop} : t3_space (subtype p) :=
embedding_subtype_coe.t3_space
variable (α)
@[priority 100] -- see Note [lower instance priority]
instance t3_space.t2_space [t3_space α] : t2_space α :=
λ x y hxy,
let s, hs, hys, hxs := t3_space.regular is_closed_singleton
(mt mem_singleton_iff.1 hxy),
t, hxt, u, hsu, htu := empty_mem_iff_bot.2 hxs,
v, hvt, hv, hxv := mem_nhds_iff.1 hxt in
v, s, hv, hs, hxv, singleton_subset_iff.1 hys,
(disjoint_iff_inter_eq_empty.2 htu.symm).mono hvt hsu⟩⟩
@[priority 100] -- see Note [lower instance priority]
instance t3_space.t2_5_space [t3_space α] : t2_5_space α :=
λ x y hxy,
let U, V, hU, hV, hh_1, hh_2, hUV := t2_separation hxy,
hxcV := not_not.mpr (interior_maximal hUV.subset_compl_right hU hh_1),
R, hR, hh := t3_space.regular is_closed_closure (by rwa closure_eq_compl_interior_compl),
A, hA, hhh := mem_nhds_iff.1 (filter.inf_principal_eq_bot.1 hh.2) in
A, V, hhh.1, hV, disjoint_compl_left.mono_left ((closure_minimal hA hR.is_closed_compl).trans $
compl_subset_compl.mpr hh.1), hhh.2, hh_2⟩⟩
variable {α}
/-- Given two points `x y`, we can find neighbourhoods `x V₁ U₁` and `y V₂ U₂`,
with the `Vₖ` closed and the `Uₖ` open, such that the `Uₖ` are disjoint. -/
lemma disjoint_nested_nhds [t3_space α] {x y : α} (h : x y) :
(U₁ V₁ 𝓝 x) (U₂ V₂ 𝓝 y), is_closed V₁ is_closed V₂ is_open U₁ is_open U₂
V₁ U₁ V₂ U₂ disjoint U₁ U₂ :=
begin
rcases t2_separation h with U₁, U₂, U₁_op, U₂_op, x_in, y_in, H,
rcases nhds_is_closed (is_open.mem_nhds U₁_op x_in) with V₁, V₁_in, h₁, V₁_closed,
rcases nhds_is_closed (is_open.mem_nhds U₂_op y_in) with V₂, V₂_in, h₂, V₂_closed,
use [U₁, mem_of_superset V₁_in h₁, V₁, V₁_in,
U₂, mem_of_superset V₂_in h₂, V₂, V₂_in],
tauto
end
/--
In a locally compact T₃ space, given a compact set `K` inside an open set `U`, we can find a
compact set `K'` between these sets: `K` is inside the interior of `K'` and `K' U`.
-/
lemma exists_compact_between [locally_compact_space α] [t3_space α]
{K U : set α} (hK : is_compact K) (hU : is_open U) (hKU : K U) :
K', is_compact K' K interior K' K' U :=
begin
choose C hxC hCU hC using λ x : K, nhds_is_closed (hU.mem_nhds $ hKU x.2),
choose L hL hxL using λ x : K, exists_compact_mem_nhds (x : α),
have : K x, interior (L x) interior (C x), from
λ x hx, mem_Union.mpr ⟨⟨x, hx,
mem_interior_iff_mem_nhds.mpr (hxL _), mem_interior_iff_mem_nhds.mpr (hxC _)⟩⟩,
rcases hK.elim_finite_subcover _ _ this with t, ht,
{ refine ⟨⋃ x t, L x C x, t.compact_bUnion (λ x _, (hL x).inter_right (hC x)), λ x hx, _, _,
{ obtain y, hyt, hy : x interior (L y) interior (C y) := mem_Union₂.mp (ht hx),
rw [ interior_inter] at hy,
refine interior_mono (subset_bUnion_of_mem hyt) hy },
{ simp_rw [Union_subset_iff], rintro x -, exact (inter_subset_right _ _).trans (hCU _) } },
{ exact λ _, is_open_interior.inter is_open_interior }
end
/--
In a locally compact regular space, given a compact set `K` inside an open set `U`, we can find a
open set `V` between these sets with compact closure: `K V` and the closure of `V` is inside `U`.
-/
lemma exists_open_between_and_is_compact_closure [locally_compact_space α] [t3_space α]
{K U : set α} (hK : is_compact K) (hU : is_open U) (hKU : K U) :
V, is_open V K V closure V U is_compact (closure V) :=
begin
rcases exists_compact_between hK hU hKU with V, hV, hKV, hVU,
refine interior V, is_open_interior, hKV,
(closure_minimal interior_subset hV.is_closed).trans hVU,
compact_closure_of_subset_compact hV interior_subset,
end
end t3
section normality
/-- A T₄ space, also known as a normal space (although this condition sometimes
omits T₂), is one in which for every pair of disjoint closed sets `C` and `D`,
there exist disjoint open sets containing `C` and `D` respectively. -/
class normal_space (α : Type u) [topological_space α] extends t1_space α : Prop :=
(normal : ∀ s t : set α, is_closed sis_closed tdisjoint s t
u v, is_open uis_open vsutvdisjoint u v)
theorem normal_separation [normal_space α] {s t : set α}
(H1 : is_closed s) (H2 : is_closed t) (H3 : disjoint s t) :
u v, is_open u is_open v s u t v disjoint u v :=
normal_space.normal s t H1 H2 H3
theorem normal_exists_closure_subset [normal_space α] {s t : set α} (hs : is_closed s)
(ht : is_open t) (hst : s t) :
u, is_open u s u closure u t :=
begin
have : disjoint s tᶜ, from λ x hxs, hxt, hxt (hst hxs),
rcases normal_separation hs (is_closed_compl_iff.2 ht) this
with s', t', hs', ht', hss', htt', hs't',
refine s', hs', hss',
subset.trans (closure_minimal _ (is_closed_compl_iff.2 ht')) (compl_subset_comm.1 htt'),
exact λ x hxs hxt, hs't' hxs, hxt
end
@[priority 100] -- see Note [lower instance priority]
instance normal_space.t3_space [normal_space α] : t3_space α :=
{ regular := λ s x hs hxs, let u, v, hu, hv, hsu, hxv, huv :=
normal_separation hs is_closed_singleton
_ hx, hy, hxs $ mem_of_eq_of_mem (eq_of_mem_singleton hy).symm hx) in
u, hu, hsu, filter.empty_mem_iff_bot.1 $ filter.mem_inf_iff.2
v, is_open.mem_nhds hv (singleton_subset_iff.1 hxv), u, filter.mem_principal_self u,
by rwa [eq_comm, inter_comm, disjoint_iff_inter_eq_empty]⟩⟩ }
-- We can't make this an instance because it could cause an instance loop.
lemma normal_of_compact_t2 [compact_space α] [t2_space α] : normal_space α :=
λ s t hs ht, compact_compact_separated hs.is_compact ht.is_compact
protected lemma closed_embedding.normal_space [topological_space β] [normal_space β] {f : α β}
(hf : closed_embedding f) : normal_space α :=
{ to_t1_space := hf.to_embedding.t1_space,
normal :=
begin
intros s t hs ht hst,
rcases normal_space.normal (f '' s) (f '' t) (hf.is_closed_map s hs) (hf.is_closed_map t ht)
(disjoint_image_of_injective hf.inj hst) with u, v, hu, hv, hsu, htv, huv,
rw image_subset_iff at hsu htv,
exact f ⁻¹' u, f ⁻¹' v, hu.preimage hf.continuous, hv.preimage hf.continuous,
hsu, htv, huv.preimage f
end }
variable (α)
/-- A T₃ topological space with second countable topology is a normal space.
This lemma is not an instance to avoid a loop. -/
lemma normal_space_of_t3_second_countable [second_countable_topology α] [t3_space α] :
normal_space α :=
begin
have key : {s t : set α}, is_closed t disjoint s t
U : set (countable_basis α), (s u U, u)
( u U, disjoint (closure u) t)
n : ℕ, is_closed ( (u U) (h : encodable.encode u n), closure (u : set α)),
{ intros s t hc hd,
rw disjoint_left at hd,
have : x s, U countable_basis α, x U disjoint (closure U) t,
{ intros x hx,
rcases (is_basis_countable_basis α).exists_closure_subset (hc.is_open_compl.mem_nhds (hd hx))
with u, hu, hxu, hut,
exact u, hu, hxu, disjoint_left.2 hut },
choose! U hu hxu hd,
set V : s countable_basis α := maps_to.restrict _ _ _ hu,
refine range V, _, forall_range_iff.2 $ subtype.forall.2 hd, λ n, _,
{ rw bUnion_range,
exact λ x hx, mem_Union.2 ⟨⟨x, hx, hxu x hx },
{ simp only [ supr_eq_Union, supr_and'],
exact is_closed_bUnion (((finite_le_nat n).preimage_embedding (encodable.encode' _)).subset $
inter_subset_right _ _) (λ u hu, is_closed_closure) } },
refine λ s t hs ht hd, _,
rcases key ht hd with U, hsU, hUd, hUc,
rcases key hs hd.symm with V, htV, hVd, hVc,
refine ⟨⋃ u U, u \ (v V) (hv : encodable.encode v encodable.encode u), closure v,
v V, v \ (u U) (hu : encodable.encode u encodable.encode v), closure u,
is_open_bUnion $ λ u hu, (is_open_of_mem_countable_basis u.2).sdiff (hVc _),
is_open_bUnion $ λ v hv, (is_open_of_mem_countable_basis v.2).sdiff (hUc _),
λ x hx, _, λ x hx, _, _,
{ rcases mem_Union₂.1 (hsU hx) with u, huU, hxu,
refine mem_bUnion huU hxu, _,
simp only [mem_Union],
rintro v, hvV, -, hxv,
exact hVd v hvV hxv, hx },
{ rcases mem_Union₂.1 (htV hx) with v, hvV, hxv,
refine mem_bUnion hvV hxv, _,
simp only [mem_Union],
rintro u, huU, -, hxu,
exact hUd u huU hxu, hx },
{ simp only [disjoint_left, mem_Union, mem_diff, not_exists, not_and, not_forall, not_not],
rintro a u, huU, hau, haV v hvV hav,
cases le_total (encodable.encode u) (encodable.encode v) with hle hle,
exacts [u, huU, hle, subset_closure hau, (haV _ hvV hle $ subset_closure hav).elim] }
end
end normality
/-- In a compact t2 space, the connected component of a point equals the intersection of all
its clopen neighbourhoods. -/
lemma connected_component_eq_Inter_clopen [t2_space α] [compact_space α] (x : α) :
connected_component x = Z : {Z : set α // is_clopen Z ∧ x ∈ Z}, Z :=
begin
apply eq_of_subset_of_subset connected_component_subset_Inter_clopen,
-- Reduce to showing that the clopen intersection is connected.
refine is_preconnected.subset_connected_component _ (mem_Inter.2Z, Z.2.2)),
-- We do this by showing that any disjoint cover by two closed sets implies
-- that one of these closed sets must contain our whole thing.
-- To reduce to the case where the cover is disjoint on all of `α` we need that `s` is closed
have hs : @is_closed _ _inst_1 ( (Z : {Z : set α // is_clopen Z ∧ x ∈ Z}), Z) :=
is_closed_Inter (λ Z, Z.2.1.2),
rw (is_preconnected_iff_subset_of_fully_disjoint_closed hs),
intros a b ha hb hab ab_disj,
haveI := @normal_of_compact_t2 α _ _ _,
-- Since our space is normal, we get two larger disjoint open sets containing the disjoint
-- closed sets. If we can show that our intersection is a subset of any of these we can then
-- "descend" this to show that it is a subset of either a or b.
rcases normal_separation ha hb ab_disj with u, v, hu, hv, hau, hbv, huv,
-- If we can find a clopen set around x, contained in u v, we get a disjoint decomposition
-- Z = Z u Z v of clopen sets. The intersection of all clopen neighbourhoods will then lie
-- in whichever of u or v x lies in and hence will be a subset of either a or b.
suffices : (Z : set α), is_clopen Z x Z Z u v,
{ cases this with Z H,
have H1 := is_clopen_inter_of_disjoint_cover_clopen H.1 H.2.2 hu hv huv,
rw [union_comm] at H,
have H2 := is_clopen_inter_of_disjoint_cover_clopen H.1 H.2.2 hv hu huv.symm,
by_cases (x u),
-- The x u case.
{ left,
suffices : ( (Z : {Z : set α // is_clopen Z ∧ x ∈ Z}), ↑Z) ⊆ u,
{ replace hab : ( (Z : {Z // is_clopen Z ∧ x ∈ Z}), ↑Z) ≤ a ∪ b := hab,
replace this : ( (Z : {Z // is_clopen Z ∧ x ∈ Z}), ↑Z) ≤ u := this,
exact disjoint.left_le_of_le_sup_right hab (huv.mono this hbv) },
{ apply subset.trans _ (inter_subset_right Z u),
apply Inter_subset (λ Z : {Z : set α // is_clopen Z ∧ x ∈ Z}, ↑Z)
Z u, H1, mem_inter H.2.1 h } },
-- If x u, we get x v since x u v. The rest is then like the x u case.
have h1 : x v,
{ cases (mem_union x u v).1 (mem_of_subset_of_mem (subset.trans hab
(union_subset_union hau hbv)) (mem_Inter.2 (λ i, i.2.2))) with h1 h1,
{ exfalso, exact h h1},
{ exact h1} },
right,
suffices : ( (Z : {Z : set α // is_clopen Z ∧ x ∈ Z}), ↑Z) ⊆ v,
{ replace this : ( (Z : {Z // is_clopen Z ∧ x ∈ Z}), ↑Z) ≤ v := this,
exact (huv.symm.mono this hau).left_le_of_le_sup_left hab },
{ apply subset.trans _ (inter_subset_right Z v),
apply Inter_subset (λ Z : {Z : set α // is_clopen Z ∧ x ∈ Z}, ↑Z)
Z v, H2, mem_inter H.2.1 h1 } },
-- Now we find the required Z. We utilize the fact that X \ u v will be compact,
-- so there must be some finite intersection of clopen neighbourhoods of X disjoint to it,
-- but a finite intersection of clopen sets is clopen so we let this be our Z.
have H1 := (hu.union hv).is_closed_compl.is_compact.inter_Inter_nonempty
(λ Z : {Z : set α // is_clopen Z ∧ x ∈ Z}, Z) (λ Z, Z.2.1.2),
rw [not_disjoint_iff_nonempty_inter, imp_not_comm, not_forall] at H1,
cases H1 (disjoint_compl_left_iff_subset.2 $ hab.trans $ union_subset_union hau hbv) with Zi H2,
refine ( (U Zi), subtype.val U), _, _, _,
{ exact is_clopen_bInter_finset (λ Z hZ, Z.2.1) },
{ exact mem_Inter₂.2Z hZ, Z.2.2) },
{ rwa [disjoint_compl_left_iff_subset, disjoint_iff_inter_eq_empty, not_nonempty_iff_eq_empty] }
end
section profinite
variables [t2_space α]
/-- A Hausdorff space with a clopen basis is totally separated. -/
lemma tot_sep_of_zero_dim (h : is_topological_basis {s : set α | is_clopen s}) :
totally_separated_space α :=
begin
constructor,
rintros x - y - hxy,
obtain u, v, hu, hv, xu, yv, disj := t2_separation hxy,
obtain w, hw : is_clopen w, xw, wu := (is_topological_basis.mem_nhds_iff h).1
(is_open.mem_nhds hu xu),
refine w, wᶜ, hw.1, hw.compl.1, xw, λ h, disj wu h, yv, _, disjoint_compl_right,
rw set.union_compl_self,
end
variables [compact_space α]
/-- A compact Hausdorff space is totally disconnected if and only if it is totally separated, this
is also true for locally compact spaces. -/
theorem compact_t2_tot_disc_iff_tot_sep :
totally_disconnected_space α totally_separated_space α :=
begin
split,
{ intro h, constructor,
rintros x - y -,
contrapose!,
intros hyp,
suffices : x connected_component y,
by simpa [totally_disconnected_space_iff_connected_component_singleton.1 h y,
mem_singleton_iff],
rw [connected_component_eq_Inter_clopen, mem_Inter],
rintro w : set α, hw : is_clopen w, hy : y w,
by_contra hx,
exact hyp wᶜ w hw.2.is_open_compl hw.1 hx hy (@is_compl_compl _ w _).symm.2
disjoint_compl_left },
apply totally_separated_space.totally_disconnected_space,
end
variables [totally_disconnected_space α]
lemma nhds_basis_clopen (x : α) : (𝓝 x).has_basis (λ s : set α, x s is_clopen s) id :=
λ U, begin
split,
{ have : connected_component x = {x},
from totally_disconnected_space_iff_connected_component_singleton.mp _ x,
rw connected_component_eq_Inter_clopen at this,
intros hU,
let N := {Z // is_clopen Z ∧ x ∈ Z},
suffices : Z : N, Z.val U,
{ rcases this with ⟨⟨s, hs, hs', hs'',
exact s, hs', hs, hs'' },
haveI : nonempty N := ⟨⟨univ, is_clopen_univ, mem_univ x⟩⟩,
have hNcl : Z : N, is_closed Z.val :=Z, Z.property.1.2),
have hdir : directed superset (λ Z : N, Z.val),
{ rintros s, hs, hxs t, ht, hxt,
exact ⟨⟨s t, hs.inter ht, hxs, hxt⟩⟩, inter_subset_left s t, inter_subset_right s t },
have h_nhd: y ( Z : N, Z.val), U 𝓝 y,
{ intros y y_in,
erw [this, mem_singleton_iff] at y_in,
rwa y_in },
exact exists_subset_nhd_of_compact_space hdir hNcl h_nhd },
{ rintro V, hxV, V_op, -⟩, hUV : V U,
rw mem_nhds_iff,
exact V, hUV, V_op, hxV }
end
lemma is_topological_basis_clopen : is_topological_basis {s : set α | is_clopen s} :=
begin
apply is_topological_basis_of_open_of_nhds (λ U (hU : is_clopen U), hU.1),
intros x U hxU U_op,
have : U 𝓝 x,
from is_open.mem_nhds U_op hxU,
rcases (nhds_basis_clopen x).mem_iff.mp this with V, hxV, hV, hVU : V U,
use V,
tauto
end
/-- Every member of an open set in a compact Hausdorff totally disconnected space
is contained in a clopen set contained in the open set. -/
lemma compact_exists_clopen_in_open {x : α} {U : set α} (is_open : is_open U) (memU : x U) :
(V : set α) (hV : is_clopen V), x V V U :=
(is_topological_basis.mem_nhds_iff is_topological_basis_clopen).1 (is_open.mem_nhds memU)
end profinite
section locally_compact
variables {H : Type*} [topological_space H] [locally_compact_space H] [t2_space H]
/-- A locally compact Hausdorff totally disconnected space has a basis with clopen elements. -/
lemma loc_compact_Haus_tot_disc_of_zero_dim [totally_disconnected_space H] :
is_topological_basis {s : set H | is_clopen s} :=
begin
refine is_topological_basis_of_open_of_nhds (λ u hu, hu.1) _,
rintros x U memU hU,
obtain s, comp, xs, sU := exists_compact_subset hU memU,
obtain t, h, ht, xt := mem_interior.1 xs,
let u : set s := (coe : s H)⁻¹' (interior s),
have u_open_in_s : is_open u := is_open_interior.preimage continuous_subtype_coe,
let X : s := x, h xt,
have Xu : X u := xs,
haveI : compact_space s := is_compact_iff_compact_space.1 comp,
obtain V : set s, clopen_in_s, Vx, V_sub := compact_exists_clopen_in_open u_open_in_s Xu,
have V_clopen : is_clopen ((coe : s H) '' V),
{ refine _, (comp.is_closed.closed_embedding_subtype_coe.closed_iff_image_closed).1
clopen_in_s.2,
let v : set u := (coe : u s)⁻¹' V,
have : (coe : u H) = (coe : s H) (coe : u s) := rfl,
have f0 : embedding (coe : u H) := embedding_subtype_coe.comp embedding_subtype_coe,
have f1 : open_embedding (coe : u H),
{ refine f0, _,
{ have : set.range (coe : u H) = interior s,
{ rw [this, set.range_comp, subtype.range_coe, subtype.image_preimage_coe],
apply set.inter_eq_self_of_subset_left interior_subset, },
rw this,
apply is_open_interior } },
have f2 : is_open v := clopen_in_s.1.preimage continuous_subtype_coe,
have f3 : (coe : s H) '' V = (coe : u H) '' v,
{ rw [this, image_comp coe coe, subtype.image_preimage_coe,
inter_eq_self_of_subset_left V_sub] },
rw f3,
apply f1.is_open_map v f2 },
refine coe '' V, V_clopen, by simp [Vx, h xt], _,
transitivity s,
{ simp },
assumption
end
/-- A locally compact Hausdorff space is totally disconnected
if and only if it is totally separated. -/
theorem loc_compact_t2_tot_disc_iff_tot_sep :
totally_disconnected_space H totally_separated_space H :=
begin
split,
{ introI h,
exact tot_sep_of_zero_dim loc_compact_Haus_tot_disc_of_zero_dim, },
apply totally_separated_space.totally_disconnected_space,
end
end locally_compact
/-- `connected_components α` is Hausdorff when `α` is Hausdorff and compact -/
instance connected_components.t2 [t2_space α] [compact_space α] :
t2_space (connected_components α) :=
begin
-- Proof follows that of: https://stacks.math.columbia.edu/tag/0900
-- Fix 2 distinct connected components, with points a and b
refine connected_components.surjective_coe.forall₂.2 $ λ a b ne, _,
rw connected_components.coe_ne_coe at ne,
have h := connected_component_disjoint ne,
-- write b as the intersection of all clopen subsets containing it
rw [connected_component_eq_Inter_clopen b, disjoint_iff_inter_eq_empty] at h,
-- Now we show that this can be reduced to some clopen containing `b` being disjoint to `a`
obtain U, V, hU, ha, hb, rfl : (U : set α) (V : set (connected_components α)), is_clopen U
connected_component a U = connected_component b U coe ⁻¹' V = U,
{ cases is_closed_connected_component.is_compact.elim_finite_subfamily_closed _ _ h with fin_a ha,
swap, { exact λ Z, Z.2.1.2 },
-- This clopen and its complement will separate the connected components of `a` and `b`
set U : set α := ( (i : {Z // is_clopen Z ∧ b ∈ Z}) (H : i ∈ fin_a), i),
have hU : is_clopen U := is_clopen_bInter_finset (λ i j, i.2.1),
exact U, coe '' U, hU, ha, subset_Inter₂ (λ Z _, Z.2.1.connected_component_subset Z.2.2),
(connected_components_preimage_image U).symm hU.bUnion_connected_component_eq },
rw connected_components.quotient_map_coe.is_clopen_preimage at hU,
refine Vᶜ, V, hU.compl.is_open, hU.is_open, _, hb mem_connected_component, disjoint_compl_left,
exact λ h, flip set.nonempty.ne_empty ha a, mem_connected_component, h,
end