Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Patrick Massot. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Patrick Massot | |
-/ | |
import topology.algebra.order.proj_Icc | |
import topology.continuous_function.basic | |
import topology.unit_interval | |
/-! | |
# Path connectedness | |
## Main definitions | |
In the file the unit interval `[0, 1]` in `ℝ` is denoted by `I`, and `X` is a topological space. | |
* `path (x y : X)` is the type of paths from `x` to `y`, i.e., continuous maps from `I` to `X` | |
mapping `0` to `x` and `1` to `y`. | |
* `path.map` is the image of a path under a continuous map. | |
* `joined (x y : X)` means there is a path between `x` and `y`. | |
* `joined.some_path (h : joined x y)` selects some path between two points `x` and `y`. | |
* `path_component (x : X)` is the set of points joined to `x`. | |
* `path_connected_space X` is a predicate class asserting that `X` is non-empty and every two | |
points of `X` are joined. | |
Then there are corresponding relative notions for `F : set X`. | |
* `joined_in F (x y : X)` means there is a path `γ` joining `x` to `y` with values in `F`. | |
* `joined_in.some_path (h : joined_in F x y)` selects a path from `x` to `y` inside `F`. | |
* `path_component_in F (x : X)` is the set of points joined to `x` in `F`. | |
* `is_path_connected F` asserts that `F` is non-empty and every two | |
points of `F` are joined in `F`. | |
* `loc_path_connected_space X` is a predicate class asserting that `X` is locally path-connected: | |
each point has a basis of path-connected neighborhoods (we do *not* ask these to be open). | |
## Main theorems | |
* `joined` and `joined_in F` are transitive relations. | |
One can link the absolute and relative version in two directions, using `(univ : set X)` or the | |
subtype `↥F`. | |
* `path_connected_space_iff_univ : path_connected_space X ↔ is_path_connected (univ : set X)` | |
* `is_path_connected_iff_path_connected_space : is_path_connected F ↔ path_connected_space ↥F` | |
For locally path connected spaces, we have | |
* `path_connected_space_iff_connected_space : path_connected_space X ↔ connected_space X` | |
* `is_connected_iff_is_path_connected (U_op : is_open U) : is_path_connected U ↔ is_connected U` | |
## Implementation notes | |
By default, all paths have `I` as their source and `X` as their target, but there is an | |
operation `set.Icc_extend` that will extend any continuous map `γ : I → X` into a continuous map | |
`Icc_extend zero_le_one γ : ℝ → X` that is constant before `0` and after `1`. | |
This is used to define `path.extend` that turns `γ : path x y` into a continuous map | |
`γ.extend : ℝ → X` whose restriction to `I` is the original `γ`, and is equal to `x` | |
on `(-∞, 0]` and to `y` on `[1, +∞)`. | |
-/ | |
noncomputable theory | |
open_locale classical topological_space filter unit_interval | |
open filter set function unit_interval | |
variables {X Y : Type*} [topological_space X] [topological_space Y] {x y z : X} {ι : Type*} | |
/-! ### Paths -/ | |
/-- Continuous path connecting two points `x` and `y` in a topological space -/ | |
@[nolint has_nonempty_instance] | |
structure path (x y : X) extends C(I, X) := | |
(source' : to_fun 0 = x) | |
(target' : to_fun 1 = y) | |
instance : has_coe_to_fun (path x y) (λ _, I → X) := ⟨λ p, p.to_fun⟩ | |
@[ext] protected lemma path.ext : ∀ {γ₁ γ₂ : path x y}, (γ₁ : I → X) = γ₂ → γ₁ = γ₂ | |
| ⟨⟨x, h11⟩, h12, h13⟩ ⟨⟨.(x), h21⟩, h22, h23⟩ rfl := rfl | |
namespace path | |
@[simp] lemma coe_mk (f : I → X) (h₁ h₂ h₃) : ⇑(mk ⟨f, h₁⟩ h₂ h₃ : path x y) = f := rfl | |
variable (γ : path x y) | |
@[continuity] | |
protected lemma continuous : continuous γ := | |
γ.continuous_to_fun | |
@[simp] protected lemma source : γ 0 = x := | |
γ.source' | |
@[simp] protected lemma target : γ 1 = y := | |
γ.target' | |
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case, | |
because it is a composition of multiple projections. -/ | |
def simps.apply : I → X := γ | |
initialize_simps_projections path (to_continuous_map_to_fun → simps.apply, -to_continuous_map) | |
@[simp] lemma coe_to_continuous_map : ⇑γ.to_continuous_map = γ := rfl | |
/-- Any function `φ : Π (a : α), path (x a) (y a)` can be seen as a function `α × I → X`. -/ | |
instance has_uncurry_path {X α : Type*} [topological_space X] {x y : α → X} : | |
has_uncurry (Π (a : α), path (x a) (y a)) (α × I) X := | |
⟨λ φ p, φ p.1 p.2⟩ | |
/-- The constant path from a point to itself -/ | |
@[refl, simps] def refl (x : X) : path x x := | |
{ to_fun := λ t, x, | |
continuous_to_fun := continuous_const, | |
source' := rfl, | |
target' := rfl } | |
@[simp] lemma refl_range {a : X} : range (path.refl a) = {a} := | |
by simp [path.refl, has_coe_to_fun.coe, coe_fn] | |
/-- The reverse of a path from `x` to `y`, as a path from `y` to `x` -/ | |
@[symm, simps] def symm (γ : path x y) : path y x := | |
{ to_fun := γ ∘ σ, | |
continuous_to_fun := by continuity, | |
source' := by simpa [-path.target] using γ.target, | |
target' := by simpa [-path.source] using γ.source } | |
@[simp] lemma symm_symm {γ : path x y} : γ.symm.symm = γ := | |
by { ext, simp } | |
@[simp] lemma refl_symm {a : X} : (path.refl a).symm = path.refl a := | |
by { ext, refl } | |
@[simp] lemma symm_range {a b : X} (γ : path a b) : range γ.symm = range γ := | |
begin | |
ext x, | |
simp only [mem_range, path.symm, has_coe_to_fun.coe, coe_fn, unit_interval.symm, set_coe.exists, | |
comp_app, subtype.coe_mk, subtype.val_eq_coe], | |
split; rintros ⟨y, hy, hxy⟩; refine ⟨1-y, mem_iff_one_sub_mem.mp hy, _⟩; convert hxy, | |
simp | |
end | |
/-- A continuous map extending a path to `ℝ`, constant before `0` and after `1`. -/ | |
def extend : ℝ → X := Icc_extend zero_le_one γ | |
/-- See Note [continuity lemma statement]. -/ | |
lemma _root_.continuous.path_extend {γ : Y → path x y} {f : Y → ℝ} (hγ : continuous ↿γ) | |
(hf : continuous f) : continuous (λ t, (γ t).extend (f t)) := | |
continuous.Icc_extend hγ hf | |
/-- A useful special case of `continuous.path_extend`. -/ | |
@[continuity] | |
lemma continuous_extend : continuous γ.extend := | |
γ.continuous.Icc_extend' | |
lemma _root_.filter.tendsto.path_extend {X Y : Type*} [topological_space X] [topological_space Y] | |
{l r : Y → X} {y : Y} {l₁ : filter ℝ} {l₂ : filter X} {γ : ∀ y, path (l y) (r y)} | |
(hγ : tendsto ↿γ (𝓝 y ×ᶠ l₁.map (proj_Icc 0 1 zero_le_one)) l₂) : | |
tendsto ↿(λ x, (γ x).extend) (𝓝 y ×ᶠ l₁) l₂ := | |
filter.tendsto.Icc_extend _ hγ | |
lemma _root_.continuous_at.path_extend {g : Y → ℝ} {l r : Y → X} (γ : ∀ y, path (l y) (r y)) {y : Y} | |
(hγ : continuous_at ↿γ (y, proj_Icc 0 1 zero_le_one (g y))) | |
(hg : continuous_at g y) : continuous_at (λ i, (γ i).extend (g i)) y := | |
hγ.Icc_extend (λ x, γ x) hg | |
@[simp] lemma extend_extends {X : Type*} [topological_space X] {a b : X} | |
(γ : path a b) {t : ℝ} (ht : t ∈ (Icc 0 1 : set ℝ)) : γ.extend t = γ ⟨t, ht⟩ := | |
Icc_extend_of_mem _ γ ht | |
lemma extend_zero : γ.extend 0 = x := | |
by simp | |
lemma extend_one : γ.extend 1 = y := | |
by simp | |
@[simp] lemma extend_extends' {X : Type*} [topological_space X] {a b : X} | |
(γ : path a b) (t : (Icc 0 1 : set ℝ)) : γ.extend t = γ t := | |
Icc_extend_coe _ γ t | |
@[simp] lemma extend_range {X : Type*} [topological_space X] {a b : X} | |
(γ : path a b) : range γ.extend = range γ := | |
Icc_extend_range _ γ | |
lemma extend_of_le_zero {X : Type*} [topological_space X] {a b : X} | |
(γ : path a b) {t : ℝ} (ht : t ≤ 0) : γ.extend t = a := | |
(Icc_extend_of_le_left _ _ ht).trans γ.source | |
lemma extend_of_one_le {X : Type*} [topological_space X] {a b : X} | |
(γ : path a b) {t : ℝ} (ht : 1 ≤ t) : γ.extend t = b := | |
(Icc_extend_of_right_le _ _ ht).trans γ.target | |
@[simp] lemma refl_extend {X : Type*} [topological_space X] {a : X} : | |
(path.refl a).extend = λ _, a := rfl | |
/-- The path obtained from a map defined on `ℝ` by restriction to the unit interval. -/ | |
def of_line {f : ℝ → X} (hf : continuous_on f I) (h₀ : f 0 = x) (h₁ : f 1 = y) : path x y := | |
{ to_fun := f ∘ coe, | |
continuous_to_fun := hf.comp_continuous continuous_subtype_coe subtype.prop, | |
source' := h₀, | |
target' := h₁ } | |
lemma of_line_mem {f : ℝ → X} (hf : continuous_on f I) (h₀ : f 0 = x) (h₁ : f 1 = y) : | |
∀ t, of_line hf h₀ h₁ t ∈ f '' I := | |
λ ⟨t, t_in⟩, ⟨t, t_in, rfl⟩ | |
local attribute [simp] Iic_def | |
/-- Concatenation of two paths from `x` to `y` and from `y` to `z`, putting the first | |
path on `[0, 1/2]` and the second one on `[1/2, 1]`. -/ | |
@[trans] def trans (γ : path x y) (γ' : path y z) : path x z := | |
{ to_fun := (λ t : ℝ, if t ≤ 1/2 then γ.extend (2*t) else γ'.extend (2*t-1)) ∘ coe, | |
continuous_to_fun := | |
begin | |
refine (continuous.if_le _ _ continuous_id continuous_const (by norm_num)).comp | |
continuous_subtype_coe, | |
-- TODO: the following are provable by `continuity` but it is too slow | |
exacts [γ.continuous_extend.comp (continuous_const.mul continuous_id), | |
γ'.continuous_extend.comp ((continuous_const.mul continuous_id).sub continuous_const)] | |
end, | |
source' := by norm_num, | |
target' := by norm_num } | |
lemma trans_apply (γ : path x y) (γ' : path y z) (t : I) : (γ.trans γ') t = | |
if h : (t : ℝ) ≤ 1/2 then | |
γ ⟨2 * t, (mul_pos_mem_iff zero_lt_two).2 ⟨t.2.1, h⟩⟩ | |
else | |
γ' ⟨2 * t - 1, two_mul_sub_one_mem_iff.2 ⟨(not_le.1 h).le, t.2.2⟩⟩ := | |
show ite _ _ _ = _, | |
by split_ifs; rw extend_extends | |
@[simp] lemma trans_symm (γ : path x y) (γ' : path y z) : | |
(γ.trans γ').symm = γ'.symm.trans γ.symm := | |
begin | |
ext t, | |
simp only [trans_apply, ← one_div, symm_apply, not_le, comp_app], | |
split_ifs with h h₁ h₂ h₃ h₄; rw [coe_symm_eq] at h, | |
{ have ht : (t : ℝ) = 1/2, | |
{ linarith [unit_interval.nonneg t, unit_interval.le_one t] }, | |
norm_num [ht] }, | |
{ refine congr_arg _ (subtype.ext _), | |
norm_num [sub_sub_eq_add_sub, mul_sub] }, | |
{ refine congr_arg _ (subtype.ext _), | |
have h : 2 - 2 * (t : ℝ) - 1 = 1 - 2 * t, by linarith, | |
norm_num [mul_sub, h] }, | |
{ exfalso, linarith [unit_interval.nonneg t, unit_interval.le_one t] } | |
end | |
@[simp] lemma refl_trans_refl {X : Type*} [topological_space X] {a : X} : | |
(path.refl a).trans (path.refl a) = path.refl a := | |
begin | |
ext, | |
simp only [path.trans, if_t_t, one_div, path.refl_extend], | |
refl | |
end | |
lemma trans_range {X : Type*} [topological_space X] {a b c : X} | |
(γ₁ : path a b) (γ₂ : path b c) : range (γ₁.trans γ₂) = range γ₁ ∪ range γ₂ := | |
begin | |
rw path.trans, | |
apply eq_of_subset_of_subset, | |
{ rintros x ⟨⟨t, ht0, ht1⟩, hxt⟩, | |
by_cases h : t ≤ 1/2, | |
{ left, | |
use [2*t, ⟨by linarith, by linarith⟩], | |
rw ← γ₁.extend_extends, | |
unfold_coes at hxt, | |
simp only [h, comp_app, if_true] at hxt, | |
exact hxt }, | |
{ right, | |
use [2*t-1, ⟨by linarith, by linarith⟩], | |
rw ← γ₂.extend_extends, | |
unfold_coes at hxt, | |
simp only [h, comp_app, if_false] at hxt, | |
exact hxt } }, | |
{ rintros x (⟨⟨t, ht0, ht1⟩, hxt⟩ | ⟨⟨t, ht0, ht1⟩, hxt⟩), | |
{ use ⟨t/2, ⟨by linarith, by linarith⟩⟩, | |
unfold_coes, | |
have : t/2 ≤ 1/2 := by linarith, | |
simp only [this, comp_app, if_true], | |
ring_nf, | |
rwa γ₁.extend_extends }, | |
{ by_cases h : t = 0, | |
{ use ⟨1/2, ⟨by linarith, by linarith⟩⟩, | |
unfold_coes, | |
simp only [h, comp_app, if_true, le_refl, mul_one_div_cancel (@two_ne_zero ℝ _ _)], | |
rw γ₁.extend_one, | |
rwa [← γ₂.extend_extends, h, γ₂.extend_zero] at hxt }, | |
{ use ⟨(t+1)/2, ⟨by linarith, by linarith⟩⟩, | |
unfold_coes, | |
change t ≠ 0 at h, | |
have ht0 := lt_of_le_of_ne ht0 h.symm, | |
have : ¬ (t+1)/2 ≤ 1/2 := by {rw not_le, linarith}, | |
simp only [comp_app, if_false, this], | |
ring_nf, | |
rwa γ₂.extend_extends } } } | |
end | |
/-- Image of a path from `x` to `y` by a continuous map -/ | |
def map (γ : path x y) {Y : Type*} [topological_space Y] | |
{f : X → Y} (h : continuous f) : path (f x) (f y) := | |
{ to_fun := f ∘ γ, | |
continuous_to_fun := by continuity, | |
source' := by simp, | |
target' := by simp } | |
@[simp] lemma map_coe (γ : path x y) {Y : Type*} [topological_space Y] | |
{f : X → Y} (h : continuous f) : | |
(γ.map h : I → Y) = f ∘ γ := | |
by { ext t, refl } | |
@[simp] lemma map_symm (γ : path x y) {Y : Type*} [topological_space Y] | |
{f : X → Y} (h : continuous f) : | |
(γ.map h).symm = γ.symm.map h := rfl | |
@[simp] lemma map_trans (γ : path x y) (γ' : path y z) {Y : Type*} [topological_space Y] | |
{f : X → Y} (h : continuous f) : (γ.trans γ').map h = (γ.map h).trans (γ'.map h) := | |
by { ext t, rw [trans_apply, map_coe, comp_app, trans_apply], split_ifs; refl } | |
@[simp] lemma map_id (γ : path x y) : γ.map continuous_id = γ := by { ext, refl } | |
@[simp] lemma map_map (γ : path x y) {Y : Type*} [topological_space Y] {Z : Type*} | |
[topological_space Z] {f : X → Y} (hf : continuous f) {g : Y → Z} (hg : continuous g) : | |
(γ.map hf).map hg = γ.map (hg.comp hf) := by { ext, refl } | |
/-- Casting a path from `x` to `y` to a path from `x'` to `y'` when `x' = x` and `y' = y` -/ | |
def cast (γ : path x y) {x' y'} (hx : x' = x) (hy : y' = y) : path x' y' := | |
{ to_fun := γ, | |
continuous_to_fun := γ.continuous, | |
source' := by simp [hx], | |
target' := by simp [hy] } | |
@[simp] lemma symm_cast {X : Type*} [topological_space X] {a₁ a₂ b₁ b₂ : X} | |
(γ : path a₂ b₂) (ha : a₁ = a₂) (hb : b₁ = b₂) : | |
(γ.cast ha hb).symm = (γ.symm).cast hb ha := rfl | |
@[simp] lemma trans_cast {X : Type*} [topological_space X] {a₁ a₂ b₁ b₂ c₁ c₂ : X} | |
(γ : path a₂ b₂) (γ' : path b₂ c₂) (ha : a₁ = a₂) (hb : b₁ = b₂) (hc : c₁ = c₂) : | |
(γ.cast ha hb).trans (γ'.cast hb hc) = (γ.trans γ').cast ha hc := rfl | |
@[simp] lemma cast_coe (γ : path x y) {x' y'} (hx : x' = x) (hy : y' = y) : | |
(γ.cast hx hy : I → X) = γ := | |
rfl | |
@[continuity] | |
lemma symm_continuous_family {X ι : Type*} [topological_space X] [topological_space ι] | |
{a b : ι → X} (γ : Π (t : ι), path (a t) (b t)) (h : continuous ↿γ) : | |
continuous ↿(λ t, (γ t).symm) := | |
h.comp (continuous_id.prod_map continuous_symm) | |
@[continuity] | |
lemma continuous_uncurry_extend_of_continuous_family {X ι : Type*} [topological_space X] | |
[topological_space ι] {a b : ι → X} (γ : Π (t : ι), path (a t) (b t)) (h : continuous ↿γ) : | |
continuous ↿(λ t, (γ t).extend) := | |
h.comp (continuous_id.prod_map continuous_proj_Icc) | |
@[continuity] | |
lemma trans_continuous_family {X ι : Type*} [topological_space X] [topological_space ι] | |
{a b c : ι → X} | |
(γ₁ : Π (t : ι), path (a t) (b t)) (h₁ : continuous ↿γ₁) | |
(γ₂ : Π (t : ι), path (b t) (c t)) (h₂ : continuous ↿γ₂) : | |
continuous ↿(λ t, (γ₁ t).trans (γ₂ t)) := | |
begin | |
have h₁' := path.continuous_uncurry_extend_of_continuous_family γ₁ h₁, | |
have h₂' := path.continuous_uncurry_extend_of_continuous_family γ₂ h₂, | |
simp only [has_uncurry.uncurry, has_coe_to_fun.coe, coe_fn, path.trans, (∘)], | |
refine continuous.if_le _ _ (continuous_subtype_coe.comp continuous_snd) continuous_const _, | |
{ change continuous ((λ p : ι × ℝ, (γ₁ p.1).extend p.2) ∘ (prod.map id (λ x, 2*x : I → ℝ))), | |
exact h₁'.comp (continuous_id.prod_map $ continuous_const.mul continuous_subtype_coe) }, | |
{ change continuous ((λ p : ι × ℝ, (γ₂ p.1).extend p.2) ∘ (prod.map id (λ x, 2*x - 1 : I → ℝ))), | |
exact h₂'.comp (continuous_id.prod_map $ | |
(continuous_const.mul continuous_subtype_coe).sub continuous_const) }, | |
{ rintros st hst, | |
simp [hst, mul_inv_cancel (@two_ne_zero ℝ _ _)] } | |
end | |
/-! #### Product of paths -/ | |
section prod | |
variables {a₁ a₂ a₃ : X} {b₁ b₂ b₃ : Y} | |
/-- Given a path in `X` and a path in `Y`, we can take their pointwise product to get a path in | |
`X × Y`. -/ | |
protected def prod (γ₁ : path a₁ a₂) (γ₂ : path b₁ b₂) : | |
path (a₁, b₁) (a₂, b₂) := | |
{ to_continuous_map := continuous_map.prod_mk γ₁.to_continuous_map γ₂.to_continuous_map, | |
source' := by simp, | |
target' := by simp, } | |
@[simp] lemma prod_coe_fn (γ₁ : path a₁ a₂) (γ₂ : path b₁ b₂) : | |
(coe_fn (γ₁.prod γ₂)) = λ t, (γ₁ t, γ₂ t) := rfl | |
/-- Path composition commutes with products -/ | |
lemma trans_prod_eq_prod_trans | |
(γ₁ : path a₁ a₂) (δ₁ : path a₂ a₃) (γ₂ : path b₁ b₂) (δ₂ : path b₂ b₃) : | |
(γ₁.prod γ₂).trans (δ₁.prod δ₂) = (γ₁.trans δ₁).prod (γ₂.trans δ₂) := | |
begin | |
ext t; | |
unfold path.trans; | |
simp only [path.coe_mk, path.prod_coe_fn, function.comp_app]; | |
split_ifs; refl, | |
end | |
end prod | |
section pi | |
variables {χ : ι → Type*} [∀ i, topological_space (χ i)] {as bs cs : Π i, χ i} | |
/-- Given a family of paths, one in each Xᵢ, we take their pointwise product to get a path in | |
Π i, Xᵢ. -/ | |
protected def pi (γ : Π i, path (as i) (bs i)) : path as bs := | |
{ to_continuous_map := continuous_map.pi (λ i, (γ i).to_continuous_map), | |
source' := by simp, | |
target' := by simp, } | |
@[simp] lemma pi_coe_fn (γ : Π i, path (as i) (bs i)) : (coe_fn (path.pi γ)) = λ t i, γ i t := rfl | |
/-- Path composition commutes with products -/ | |
lemma trans_pi_eq_pi_trans (γ₀ : Π i, path (as i) (bs i)) (γ₁ : Π i, path (bs i) (cs i)) : | |
(path.pi γ₀).trans (path.pi γ₁) = path.pi (λ i, (γ₀ i).trans (γ₁ i)) := | |
begin | |
ext t i, | |
unfold path.trans, | |
simp only [path.coe_mk, function.comp_app, pi_coe_fn], | |
split_ifs; refl, | |
end | |
end pi | |
/-! #### Pointwise multiplication/addition of two paths in a topological (additive) group -/ | |
/-- Pointwise multiplication of paths in a topological group. The additive version is probably more | |
useful. -/ | |
@[to_additive "Pointwise addition of paths in a topological additive group."] | |
protected def mul [has_mul X] [has_continuous_mul X] {a₁ b₁ a₂ b₂ : X} | |
(γ₁ : path a₁ b₁) (γ₂ : path a₂ b₂) : path (a₁ * a₂) (b₁ * b₂) := | |
(γ₁.prod γ₂).map continuous_mul | |
@[to_additive] protected lemma mul_apply [has_mul X] [has_continuous_mul X] {a₁ b₁ a₂ b₂ : X} | |
(γ₁ : path a₁ b₁) (γ₂ : path a₂ b₂) (t : unit_interval) : (γ₁.mul γ₂) t = γ₁ t * γ₂ t := rfl | |
/-! #### Truncating a path -/ | |
/-- `γ.truncate t₀ t₁` is the path which follows the path `γ` on the | |
time interval `[t₀, t₁]` and stays still otherwise. -/ | |
def truncate {X : Type*} [topological_space X] {a b : X} | |
(γ : path a b) (t₀ t₁ : ℝ) : path (γ.extend $ min t₀ t₁) (γ.extend t₁) := | |
{ to_fun := λ s, γ.extend (min (max s t₀) t₁), | |
continuous_to_fun := γ.continuous_extend.comp | |
((continuous_subtype_coe.max continuous_const).min continuous_const), | |
source' := | |
begin | |
simp only [min_def, max_def], | |
norm_cast, | |
split_ifs with h₁ h₂ h₃ h₄, | |
{ simp [γ.extend_of_le_zero h₁] }, | |
{ congr, linarith }, | |
{ have h₄ : t₁ ≤ 0 := le_of_lt (by simpa using h₂), | |
simp [γ.extend_of_le_zero h₄, γ.extend_of_le_zero h₁] }, | |
all_goals { refl } | |
end, | |
target' := | |
begin | |
simp only [min_def, max_def], | |
norm_cast, | |
split_ifs with h₁ h₂ h₃, | |
{ simp [γ.extend_of_one_le h₂] }, | |
{ refl }, | |
{ have h₄ : 1 ≤ t₀ := le_of_lt (by simpa using h₁), | |
simp [γ.extend_of_one_le h₄, γ.extend_of_one_le (h₄.trans h₃)] }, | |
{ refl } | |
end } | |
/-- `γ.truncate_of_le t₀ t₁ h`, where `h : t₀ ≤ t₁` is `γ.truncate t₀ t₁` | |
casted as a path from `γ.extend t₀` to `γ.extend t₁`. -/ | |
def truncate_of_le {X : Type*} [topological_space X] {a b : X} | |
(γ : path a b) {t₀ t₁ : ℝ} (h : t₀ ≤ t₁) : path (γ.extend t₀) (γ.extend t₁) := | |
(γ.truncate t₀ t₁).cast (by rw min_eq_left h) rfl | |
lemma truncate_range {X : Type*} [topological_space X] {a b : X} | |
(γ : path a b) {t₀ t₁ : ℝ} : range (γ.truncate t₀ t₁) ⊆ range γ := | |
begin | |
rw ← γ.extend_range, | |
simp only [range_subset_iff, set_coe.exists, set_coe.forall], | |
intros x hx, | |
simp only [has_coe_to_fun.coe, coe_fn, path.truncate, mem_range_self] | |
end | |
/-- For a path `γ`, `γ.truncate` gives a "continuous family of paths", by which we | |
mean the uncurried function which maps `(t₀, t₁, s)` to `γ.truncate t₀ t₁ s` is continuous. -/ | |
@[continuity] | |
lemma truncate_continuous_family {X : Type*} [topological_space X] {a b : X} | |
(γ : path a b) : continuous (λ x, γ.truncate x.1 x.2.1 x.2.2 : ℝ × ℝ × I → X) := | |
γ.continuous_extend.comp | |
(((continuous_subtype_coe.comp (continuous_snd.comp continuous_snd)).max continuous_fst).min | |
(continuous_fst.comp continuous_snd)) | |
/- TODO : When `continuity` gets quicker, change the proof back to : | |
`begin` | |
`simp only [has_coe_to_fun.coe, coe_fn, path.truncate],` | |
`continuity,` | |
`exact continuous_subtype_coe` | |
`end` -/ | |
@[continuity] | |
lemma truncate_const_continuous_family {X : Type*} [topological_space X] {a b : X} | |
(γ : path a b) (t : ℝ) : continuous ↿(γ.truncate t) := | |
have key : continuous (λ x, (t, x) : ℝ × I → ℝ × ℝ × I) := continuous_const.prod_mk continuous_id, | |
by convert γ.truncate_continuous_family.comp key | |
@[simp] lemma truncate_self {X : Type*} [topological_space X] {a b : X} | |
(γ : path a b) (t : ℝ) : γ.truncate t t = (path.refl $ γ.extend t).cast (by rw min_self) rfl := | |
begin | |
ext x, | |
rw cast_coe, | |
simp only [truncate, has_coe_to_fun.coe, coe_fn, refl, min_def, max_def], | |
split_ifs with h₁ h₂; congr, | |
exact le_antisymm ‹_› ‹_› | |
end | |
@[simp] lemma truncate_zero_zero {X : Type*} [topological_space X] {a b : X} (γ : path a b) : | |
γ.truncate 0 0 = (path.refl a).cast (by rw [min_self, γ.extend_zero]) γ.extend_zero := | |
by convert γ.truncate_self 0; exact γ.extend_zero.symm | |
@[simp] lemma truncate_one_one {X : Type*} [topological_space X] {a b : X} (γ : path a b) : | |
γ.truncate 1 1 = (path.refl b).cast (by rw [min_self, γ.extend_one]) γ.extend_one := | |
by convert γ.truncate_self 1; exact γ.extend_one.symm | |
@[simp] lemma truncate_zero_one {X : Type*} [topological_space X] {a b : X} | |
(γ : path a b) : γ.truncate 0 1 = γ.cast (by simp [zero_le_one, extend_zero]) (by simp) := | |
begin | |
ext x, | |
rw cast_coe, | |
have : ↑x ∈ (Icc 0 1 : set ℝ) := x.2, | |
rw [truncate, coe_mk, max_eq_left this.1, min_eq_left this.2, extend_extends'] | |
end | |
/-! #### Reparametrising a path -/ | |
/-- | |
Given a path `γ` and a function `f : I → I` where `f 0 = 0` and `f 1 = 1`, `γ.reparam f` is the | |
path defined by `γ ∘ f`. | |
-/ | |
def reparam (γ : path x y) (f : I → I) (hfcont : continuous f) (hf₀ : f 0 = 0) (hf₁ : f 1 = 1) : | |
path x y := | |
{ to_fun := γ ∘ f, | |
continuous_to_fun := by continuity, | |
source' := by simp [hf₀], | |
target' := by simp [hf₁] } | |
@[simp] | |
lemma coe_to_fun (γ : path x y) {f : I → I} (hfcont : continuous f) (hf₀ : f 0 = 0) | |
(hf₁ : f 1 = 1) : ⇑(γ.reparam f hfcont hf₀ hf₁) = γ ∘ f := rfl | |
@[simp] | |
lemma reparam_id (γ : path x y) : γ.reparam id continuous_id rfl rfl = γ := | |
by { ext, refl } | |
lemma range_reparam (γ : path x y) {f : I → I} (hfcont : continuous f) (hf₀ : f 0 = 0) | |
(hf₁ : f 1 = 1) : range ⇑(γ.reparam f hfcont hf₀ hf₁) = range γ := | |
begin | |
change range (γ ∘ f) = range γ, | |
have : range f = univ, | |
{ rw range_iff_surjective, | |
intro t, | |
have h₁ : continuous (Icc_extend (zero_le_one' ℝ) f), | |
{ continuity }, | |
have := intermediate_value_Icc (zero_le_one' ℝ) h₁.continuous_on, | |
{ rw [Icc_extend_left, Icc_extend_right] at this, | |
change Icc (f 0) (f 1) ⊆ _ at this, | |
rw [hf₀, hf₁] at this, | |
rcases this t.2 with ⟨w, hw₁, hw₂⟩, | |
rw Icc_extend_of_mem _ _ hw₁ at hw₂, | |
use [⟨w, hw₁⟩, hw₂] } }, | |
rw [range_comp, this, image_univ], | |
end | |
lemma refl_reparam {f : I → I} (hfcont : continuous f) (hf₀ : f 0 = 0) | |
(hf₁ : f 1 = 1) : (refl x).reparam f hfcont hf₀ hf₁ = refl x := | |
begin | |
ext, | |
simp, | |
end | |
end path | |
/-! ### Being joined by a path -/ | |
/-- The relation "being joined by a path". This is an equivalence relation. -/ | |
def joined (x y : X) : Prop := | |
nonempty (path x y) | |
@[refl] lemma joined.refl (x : X) : joined x x := | |
⟨path.refl x⟩ | |
/-- When two points are joined, choose some path from `x` to `y`. -/ | |
def joined.some_path (h : joined x y) : path x y := | |
nonempty.some h | |
@[symm] lemma joined.symm {x y : X} (h : joined x y) : joined y x := | |
⟨h.some_path.symm⟩ | |
@[trans] lemma joined.trans {x y z : X} (hxy : joined x y) (hyz : joined y z) : | |
joined x z := | |
⟨hxy.some_path.trans hyz.some_path⟩ | |
variables (X) | |
/-- The setoid corresponding the equivalence relation of being joined by a continuous path. -/ | |
def path_setoid : setoid X := | |
{ r := joined, | |
iseqv := mk_equivalence _ joined.refl (λ x y, joined.symm) (λ x y z, joined.trans) } | |
/-- The quotient type of points of a topological space modulo being joined by a continuous path. -/ | |
def zeroth_homotopy := quotient (path_setoid X) | |
instance : inhabited (zeroth_homotopy ℝ) := ⟨@quotient.mk ℝ (path_setoid ℝ) 0⟩ | |
variables {X} | |
/-! ### Being joined by a path inside a set -/ | |
/-- The relation "being joined by a path in `F`". Not quite an equivalence relation since it's not | |
reflexive for points that do not belong to `F`. -/ | |
def joined_in (F : set X) (x y : X) : Prop := | |
∃ γ : path x y, ∀ t, γ t ∈ F | |
variables {F : set X} | |
lemma joined_in.mem (h : joined_in F x y) : x ∈ F ∧ y ∈ F := | |
begin | |
rcases h with ⟨γ, γ_in⟩, | |
have : γ 0 ∈ F ∧ γ 1 ∈ F, by { split; apply γ_in }, | |
simpa using this | |
end | |
lemma joined_in.source_mem (h : joined_in F x y) : x ∈ F := | |
h.mem.1 | |
lemma joined_in.target_mem (h : joined_in F x y) : y ∈ F := | |
h.mem.2 | |
/-- When `x` and `y` are joined in `F`, choose a path from `x` to `y` inside `F` -/ | |
def joined_in.some_path (h : joined_in F x y) : path x y := | |
classical.some h | |
lemma joined_in.some_path_mem (h : joined_in F x y) (t : I) : h.some_path t ∈ F := | |
classical.some_spec h t | |
/-- If `x` and `y` are joined in the set `F`, then they are joined in the subtype `F`. -/ | |
lemma joined_in.joined_subtype (h : joined_in F x y) : | |
joined (⟨x, h.source_mem⟩ : F) (⟨y, h.target_mem⟩ : F) := | |
⟨{ to_fun := λ t, ⟨h.some_path t, h.some_path_mem t⟩, | |
continuous_to_fun := by continuity, | |
source' := by simp, | |
target' := by simp }⟩ | |
lemma joined_in.of_line {f : ℝ → X} (hf : continuous_on f I) (h₀ : f 0 = x) (h₁ : f 1 = y) | |
(hF : f '' I ⊆ F) : joined_in F x y := | |
⟨path.of_line hf h₀ h₁, λ t, hF $ path.of_line_mem hf h₀ h₁ t⟩ | |
lemma joined_in.joined (h : joined_in F x y) : joined x y := | |
⟨h.some_path⟩ | |
lemma joined_in_iff_joined (x_in : x ∈ F) (y_in : y ∈ F) : | |
joined_in F x y ↔ joined (⟨x, x_in⟩ : F) (⟨y, y_in⟩ : F) := | |
⟨λ h, h.joined_subtype, λ h, ⟨h.some_path.map continuous_subtype_coe, by simp⟩⟩ | |
@[simp] lemma joined_in_univ : joined_in univ x y ↔ joined x y := | |
by simp [joined_in, joined, exists_true_iff_nonempty] | |
lemma joined_in.mono {U V : set X} (h : joined_in U x y) (hUV : U ⊆ V) : joined_in V x y := | |
⟨h.some_path, λ t, hUV (h.some_path_mem t)⟩ | |
lemma joined_in.refl (h : x ∈ F) : joined_in F x x := | |
⟨path.refl x, λ t, h⟩ | |
@[symm] lemma joined_in.symm (h : joined_in F x y) : joined_in F y x := | |
begin | |
cases h.mem with hx hy, | |
simp [joined_in_iff_joined, *] at *, | |
exact h.symm | |
end | |
lemma joined_in.trans (hxy : joined_in F x y) (hyz : joined_in F y z) : joined_in F x z := | |
begin | |
cases hxy.mem with hx hy, | |
cases hyz.mem with hx hy, | |
simp [joined_in_iff_joined, *] at *, | |
exact hxy.trans hyz | |
end | |
/-! ### Path component -/ | |
/-- The path component of `x` is the set of points that can be joined to `x`. -/ | |
def path_component (x : X) := {y | joined x y} | |
@[simp] lemma mem_path_component_self (x : X) : x ∈ path_component x := | |
joined.refl x | |
@[simp] lemma path_component.nonempty (x : X) : (path_component x).nonempty := | |
⟨x, mem_path_component_self x⟩ | |
lemma mem_path_component_of_mem (h : x ∈ path_component y) : y ∈ path_component x := | |
joined.symm h | |
lemma path_component_symm : x ∈ path_component y ↔ y ∈ path_component x := | |
⟨λ h, mem_path_component_of_mem h, λ h, mem_path_component_of_mem h⟩ | |
lemma path_component_congr (h : x ∈ path_component y) : path_component x = path_component y := | |
begin | |
ext z, | |
split, | |
{ intro h', | |
rw path_component_symm, | |
exact (h.trans h').symm }, | |
{ intro h', | |
rw path_component_symm at h' ⊢, | |
exact h'.trans h }, | |
end | |
lemma path_component_subset_component (x : X) : path_component x ⊆ connected_component x := | |
λ y h, (is_connected_range h.some_path.continuous).subset_connected_component | |
⟨0, by simp⟩ ⟨1, by simp⟩ | |
/-- The path component of `x` in `F` is the set of points that can be joined to `x` in `F`. -/ | |
def path_component_in (x : X) (F : set X) := {y | joined_in F x y} | |
@[simp] lemma path_component_in_univ (x : X) : path_component_in x univ = path_component x := | |
by simp [path_component_in, path_component, joined_in, joined, exists_true_iff_nonempty] | |
lemma joined.mem_path_component (hyz : joined y z) (hxy : y ∈ path_component x) : | |
z ∈ path_component x := | |
hxy.trans hyz | |
/-! ### Path connected sets -/ | |
/-- A set `F` is path connected if it contains a point that can be joined to all other in `F`. -/ | |
def is_path_connected (F : set X) : Prop := ∃ x ∈ F, ∀ {y}, y ∈ F → joined_in F x y | |
lemma is_path_connected_iff_eq : is_path_connected F ↔ ∃ x ∈ F, path_component_in x F = F := | |
begin | |
split ; rintros ⟨x, x_in, h⟩ ; use [x, x_in], | |
{ ext y, | |
exact ⟨λ hy, hy.mem.2, h⟩ }, | |
{ intros y y_in, | |
rwa ← h at y_in }, | |
end | |
lemma is_path_connected.joined_in (h : is_path_connected F) : ∀ x y ∈ F, joined_in F x y := | |
λ x x_in x y_in, let ⟨b, b_in, hb⟩ := h in (hb x_in).symm.trans (hb y_in) | |
lemma is_path_connected_iff : is_path_connected F ↔ F.nonempty ∧ ∀ x y ∈ F, joined_in F x y := | |
⟨λ h, ⟨let ⟨b, b_in, hb⟩ := h in ⟨b, b_in⟩, h.joined_in⟩, | |
λ ⟨⟨b, b_in⟩, h⟩, ⟨b, b_in, λ x x_in, h b b_in x x_in⟩⟩ | |
lemma is_path_connected.image {Y : Type*} [topological_space Y] (hF : is_path_connected F) | |
{f : X → Y} (hf : continuous f) : is_path_connected (f '' F) := | |
begin | |
rcases hF with ⟨x, x_in, hx⟩, | |
use [f x, mem_image_of_mem f x_in], | |
rintros _ ⟨y, y_in, rfl⟩, | |
exact ⟨(hx y_in).some_path.map hf, λ t, ⟨_, (hx y_in).some_path_mem t, rfl⟩⟩, | |
end | |
lemma is_path_connected.mem_path_component (h : is_path_connected F) (x_in : x ∈ F) (y_in : y ∈ F) : | |
y ∈ path_component x := | |
(h.joined_in x x_in y y_in).joined | |
lemma is_path_connected.subset_path_component (h : is_path_connected F) (x_in : x ∈ F) : | |
F ⊆ path_component x := | |
λ y y_in, h.mem_path_component x_in y_in | |
lemma is_path_connected.union {U V : set X} (hU : is_path_connected U) (hV : is_path_connected V) | |
(hUV : (U ∩ V).nonempty) : is_path_connected (U ∪ V) := | |
begin | |
rcases hUV with ⟨x, xU, xV⟩, | |
use [x, or.inl xU], | |
rintros y (yU | yV), | |
{ exact (hU.joined_in x xU y yU).mono (subset_union_left U V) }, | |
{ exact (hV.joined_in x xV y yV).mono (subset_union_right U V) }, | |
end | |
/-- If a set `W` is path-connected, then it is also path-connected when seen as a set in a smaller | |
ambient type `U` (when `U` contains `W`). -/ | |
lemma is_path_connected.preimage_coe {U W : set X} (hW : is_path_connected W) (hWU : W ⊆ U) : | |
is_path_connected ((coe : U → X) ⁻¹' W) := | |
begin | |
rcases hW with ⟨x, x_in, hx⟩, | |
use [⟨x, hWU x_in⟩, by simp [x_in]], | |
rintros ⟨y, hyU⟩ hyW, | |
exact ⟨(hx hyW).joined_subtype.some_path.map (continuous_inclusion hWU), by simp⟩ | |
end | |
lemma is_path_connected.exists_path_through_family | |
{X : Type*} [topological_space X] {n : ℕ} {s : set X} (h : is_path_connected s) | |
(p : fin (n+1) → X) (hp : ∀ i, p i ∈ s) : | |
∃ γ : path (p 0) (p n), (range γ ⊆ s) ∧ (∀ i, p i ∈ range γ) := | |
begin | |
let p' : ℕ → X := λ k, if h : k < n+1 then p ⟨k, h⟩ else p ⟨0, n.zero_lt_succ⟩, | |
obtain ⟨γ, hγ⟩ : ∃ (γ : path (p' 0) (p' n)), (∀ i ≤ n, p' i ∈ range γ) ∧ range γ ⊆ s, | |
{ have hp' : ∀ i ≤ n, p' i ∈ s, | |
{ intros i hi, | |
simp [p', nat.lt_succ_of_le hi, hp] }, | |
clear_value p', | |
clear hp p, | |
induction n with n hn, | |
{ use path.refl (p' 0), | |
{ split, | |
{ rintros i hi, rw nat.le_zero_iff.mp hi, exact ⟨0, rfl⟩ }, | |
{ rw range_subset_iff, rintros x, exact hp' 0 le_rfl } } }, | |
{ rcases hn (λ i hi, hp' i $ nat.le_succ_of_le hi) with ⟨γ₀, hγ₀⟩, | |
rcases h.joined_in (p' n) (hp' n n.le_succ) (p' $ n+1) (hp' (n+1) $ le_rfl) with ⟨γ₁, hγ₁⟩, | |
let γ : path (p' 0) (p' $ n+1) := γ₀.trans γ₁, | |
use γ, | |
have range_eq : range γ = range γ₀ ∪ range γ₁ := γ₀.trans_range γ₁, | |
split, | |
{ rintros i hi, | |
by_cases hi' : i ≤ n, | |
{ rw range_eq, | |
left, | |
exact hγ₀.1 i hi' }, | |
{ rw [not_le, ← nat.succ_le_iff] at hi', | |
have : i = n.succ := by linarith, | |
rw this, | |
use 1, | |
exact γ.target } }, | |
{ rw range_eq, | |
apply union_subset hγ₀.2, | |
rw range_subset_iff, | |
exact hγ₁ } } }, | |
have hpp' : ∀ k < n+1, p k = p' k, | |
{ intros k hk, simp only [p', hk, dif_pos], congr, ext, rw fin.coe_coe_of_lt hk, norm_cast }, | |
use γ.cast (hpp' 0 n.zero_lt_succ) (hpp' n n.lt_succ_self), | |
simp only [γ.cast_coe], | |
refine and.intro hγ.2 _, | |
rintros ⟨i, hi⟩, | |
suffices : p ⟨i, hi⟩ = p' i, by convert hγ.1 i (nat.le_of_lt_succ hi), | |
rw ← hpp' i hi, | |
suffices : i = i % n.succ, { congr, assumption }, | |
rw nat.mod_eq_of_lt hi, | |
end | |
lemma is_path_connected.exists_path_through_family' | |
{X : Type*} [topological_space X] {n : ℕ} {s : set X} (h : is_path_connected s) | |
(p : fin (n+1) → X) (hp : ∀ i, p i ∈ s) : | |
∃ (γ : path (p 0) (p n)) (t : fin (n + 1) → I), (∀ t, γ t ∈ s) ∧ ∀ i, γ (t i) = p i := | |
begin | |
rcases h.exists_path_through_family p hp with ⟨γ, hγ⟩, | |
rcases hγ with ⟨h₁, h₂⟩, | |
simp only [range, mem_set_of_eq] at h₂, | |
rw range_subset_iff at h₁, | |
choose! t ht using h₂, | |
exact ⟨γ, t, h₁, ht⟩ | |
end | |
/-! ### Path connected spaces -/ | |
/-- A topological space is path-connected if it is non-empty and every two points can be | |
joined by a continuous path. -/ | |
class path_connected_space (X : Type*) [topological_space X] : Prop := | |
(nonempty : nonempty X) | |
(joined : ∀ x y : X, joined x y) | |
lemma path_connected_space_iff_zeroth_homotopy : | |
path_connected_space X ↔ nonempty (zeroth_homotopy X) ∧ subsingleton (zeroth_homotopy X) := | |
begin | |
letI := path_setoid X, | |
split, | |
{ introI h, | |
refine ⟨(nonempty_quotient_iff _).mpr h.1, ⟨_⟩⟩, | |
rintros ⟨x⟩ ⟨y⟩, | |
exact quotient.sound (path_connected_space.joined x y) }, | |
{ unfold zeroth_homotopy, | |
rintros ⟨h, h'⟩, | |
resetI, | |
exact ⟨(nonempty_quotient_iff _).mp h, λ x y, quotient.exact $ subsingleton.elim ⟦x⟧ ⟦y⟧⟩ }, | |
end | |
namespace path_connected_space | |
variables [path_connected_space X] | |
/-- Use path-connectedness to build a path between two points. -/ | |
def some_path (x y : X) : path x y := | |
nonempty.some (joined x y) | |
end path_connected_space | |
lemma is_path_connected_iff_path_connected_space : is_path_connected F ↔ path_connected_space F := | |
begin | |
rw is_path_connected_iff, | |
split, | |
{ rintro ⟨⟨x, x_in⟩, h⟩, | |
refine ⟨⟨⟨x, x_in⟩⟩, _⟩, | |
rintros ⟨y, y_in⟩ ⟨z, z_in⟩, | |
have H := h y y_in z z_in, | |
rwa joined_in_iff_joined y_in z_in at H }, | |
{ rintros ⟨⟨x, x_in⟩, H⟩, | |
refine ⟨⟨x, x_in⟩, λ y y_in z z_in, _⟩, | |
rw joined_in_iff_joined y_in z_in, | |
apply H } | |
end | |
lemma path_connected_space_iff_univ : path_connected_space X ↔ is_path_connected (univ : set X) := | |
begin | |
split, | |
{ introI h, | |
haveI := @path_connected_space.nonempty X _ _, | |
inhabit X, | |
refine ⟨default, mem_univ _, _⟩, | |
simpa using path_connected_space.joined default }, | |
{ intro h, | |
have h' := h.joined_in, | |
cases h with x h, | |
exact ⟨⟨x⟩, by simpa using h'⟩ }, | |
end | |
lemma path_connected_space_iff_eq : path_connected_space X ↔ ∃ x : X, path_component x = univ := | |
by simp [path_connected_space_iff_univ, is_path_connected_iff_eq] | |
@[priority 100] -- see Note [lower instance priority] | |
instance path_connected_space.connected_space [path_connected_space X] : connected_space X := | |
begin | |
rw connected_space_iff_connected_component, | |
rcases is_path_connected_iff_eq.mp (path_connected_space_iff_univ.mp ‹_›) with ⟨x, x_in, hx⟩, | |
use x, | |
rw ← univ_subset_iff, | |
exact (by simpa using hx : path_component x = univ) ▸ path_component_subset_component x | |
end | |
lemma is_path_connected.is_connected (hF : is_path_connected F) : is_connected F := | |
begin | |
rw is_connected_iff_connected_space, | |
rw is_path_connected_iff_path_connected_space at hF, | |
exact @path_connected_space.connected_space _ _ hF | |
end | |
namespace path_connected_space | |
variables [path_connected_space X] | |
lemma exists_path_through_family {n : ℕ} (p : fin (n+1) → X) : | |
∃ γ : path (p 0) (p n), (∀ i, p i ∈ range γ) := | |
begin | |
have : is_path_connected (univ : set X) := path_connected_space_iff_univ.mp (by apply_instance), | |
rcases this.exists_path_through_family p (λ i, true.intro) with ⟨γ, -, h⟩, | |
exact ⟨γ, h⟩ | |
end | |
lemma exists_path_through_family' {n : ℕ} (p : fin (n+1) → X) : | |
∃ (γ : path (p 0) (p n)) (t : fin (n + 1) → I), ∀ i, γ (t i) = p i := | |
begin | |
have : is_path_connected (univ : set X) := path_connected_space_iff_univ.mp (by apply_instance), | |
rcases this.exists_path_through_family' p (λ i, true.intro) with ⟨γ, t, -, h⟩, | |
exact ⟨γ, t, h⟩ | |
end | |
end path_connected_space | |
/-! ### Locally path connected spaces -/ | |
/-- A topological space is locally path connected, at every point, path connected | |
neighborhoods form a neighborhood basis. -/ | |
class loc_path_connected_space (X : Type*) [topological_space X] : Prop := | |
(path_connected_basis : ∀ x : X, (𝓝 x).has_basis (λ s : set X, s ∈ 𝓝 x ∧ is_path_connected s) id) | |
export loc_path_connected_space (path_connected_basis) | |
lemma loc_path_connected_of_bases {p : ι → Prop} {s : X → ι → set X} | |
(h : ∀ x, (𝓝 x).has_basis p (s x)) (h' : ∀ x i, p i → is_path_connected (s x i)) : | |
loc_path_connected_space X := | |
begin | |
constructor, | |
intro x, | |
apply (h x).to_has_basis, | |
{ intros i pi, | |
exact ⟨s x i, ⟨(h x).mem_of_mem pi, h' x i pi⟩, by refl⟩ }, | |
{ rintros U ⟨U_in, hU⟩, | |
rcases (h x).mem_iff.mp U_in with ⟨i, pi, hi⟩, | |
tauto } | |
end | |
lemma path_connected_space_iff_connected_space [loc_path_connected_space X] : | |
path_connected_space X ↔ connected_space X := | |
begin | |
split, | |
{ introI h, | |
apply_instance }, | |
{ introI hX, | |
rw path_connected_space_iff_eq, | |
use (classical.arbitrary X), | |
refine eq_univ_of_nonempty_clopen (by simp) ⟨_, _⟩, | |
{ rw is_open_iff_mem_nhds, | |
intros y y_in, | |
rcases (path_connected_basis y).ex_mem with ⟨U, ⟨U_in, hU⟩⟩, | |
apply mem_of_superset U_in, | |
rw ← path_component_congr y_in, | |
exact hU.subset_path_component (mem_of_mem_nhds U_in) }, | |
{ rw is_closed_iff_nhds, | |
intros y H, | |
rcases (path_connected_basis y).ex_mem with ⟨U, ⟨U_in, hU⟩⟩, | |
rcases H U U_in with ⟨z, hz, hz'⟩, | |
exact ((hU.joined_in z hz y $ mem_of_mem_nhds U_in).joined.mem_path_component hz') } }, | |
end | |
lemma path_connected_subset_basis [loc_path_connected_space X] {U : set X} (h : is_open U) | |
(hx : x ∈ U) : (𝓝 x).has_basis (λ s : set X, s ∈ 𝓝 x ∧ is_path_connected s ∧ s ⊆ U) id := | |
(path_connected_basis x).has_basis_self_subset (is_open.mem_nhds h hx) | |
lemma loc_path_connected_of_is_open [loc_path_connected_space X] {U : set X} (h : is_open U) : | |
loc_path_connected_space U := | |
⟨begin | |
rintros ⟨x, x_in⟩, | |
rw nhds_subtype_eq_comap, | |
constructor, | |
intros V, | |
rw (has_basis.comap (coe : U → X) (path_connected_subset_basis h x_in)).mem_iff, | |
split, | |
{ rintros ⟨W, ⟨W_in, hW, hWU⟩, hWV⟩, | |
exact ⟨coe ⁻¹' W, ⟨⟨preimage_mem_comap W_in, hW.preimage_coe hWU⟩, hWV⟩⟩ }, | |
{ rintros ⟨W, ⟨W_in, hW⟩, hWV⟩, | |
refine ⟨coe '' W, ⟨filter.image_coe_mem_of_mem_comap (is_open.mem_nhds h x_in) W_in, | |
hW.image continuous_subtype_coe, subtype.coe_image_subset U W⟩, _⟩, | |
rintros x ⟨y, ⟨y_in, hy⟩⟩, | |
rw ← subtype.coe_injective hy, | |
tauto }, | |
end⟩ | |
lemma is_open.is_connected_iff_is_path_connected | |
[loc_path_connected_space X] {U : set X} (U_op : is_open U) : | |
is_path_connected U ↔ is_connected U := | |
begin | |
rw [is_connected_iff_connected_space, is_path_connected_iff_path_connected_space], | |
haveI := loc_path_connected_of_is_open U_op, | |
exact path_connected_space_iff_connected_space | |
end | |