Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2018 Sébastien Gouëzel. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Sébastien Gouëzel | |
-/ | |
import analysis.normed_space.lp_space | |
import topology.sets.compacts | |
/-! | |
# The Kuratowski embedding | |
Any separable metric space can be embedded isometrically in `ℓ^∞(ℝ)`. | |
-/ | |
noncomputable theory | |
open set metric topological_space | |
open_locale ennreal | |
local notation `ℓ_infty_ℝ`:= lp (λ n : ℕ, ℝ) ∞ | |
universes u v w | |
variables {α : Type u} {β : Type v} {γ : Type w} | |
namespace Kuratowski_embedding | |
/-! ### Any separable metric space can be embedded isometrically in ℓ^∞(ℝ) -/ | |
variables {f g : ℓ_infty_ℝ} {n : ℕ} {C : ℝ} [metric_space α] (x : ℕ → α) (a b : α) | |
/-- A metric space can be embedded in `l^∞(ℝ)` via the distances to points in | |
a fixed countable set, if this set is dense. This map is given in `Kuratowski_embedding`, | |
without density assumptions. -/ | |
def embedding_of_subset : ℓ_infty_ℝ := | |
⟨ λ n, dist a (x n) - dist (x 0) (x n), | |
begin | |
apply mem_ℓp_infty, | |
use dist a (x 0), | |
rintros - ⟨n, rfl⟩, | |
exact abs_dist_sub_le _ _ _ | |
end ⟩ | |
lemma embedding_of_subset_coe : embedding_of_subset x a n = dist a (x n) - dist (x 0) (x n) := rfl | |
/-- The embedding map is always a semi-contraction. -/ | |
lemma embedding_of_subset_dist_le (a b : α) : | |
dist (embedding_of_subset x a) (embedding_of_subset x b) ≤ dist a b := | |
begin | |
refine lp.norm_le_of_forall_le dist_nonneg (λn, _), | |
simp only [lp.coe_fn_sub, pi.sub_apply, embedding_of_subset_coe, real.dist_eq], | |
convert abs_dist_sub_le a b (x n) using 2, | |
ring | |
end | |
/-- When the reference set is dense, the embedding map is an isometry on its image. -/ | |
lemma embedding_of_subset_isometry (H : dense_range x) : isometry (embedding_of_subset x) := | |
begin | |
refine isometry.of_dist_eq (λa b, _), | |
refine (embedding_of_subset_dist_le x a b).antisymm (le_of_forall_pos_le_add (λe epos, _)), | |
/- First step: find n with dist a (x n) < e -/ | |
rcases metric.mem_closure_range_iff.1 (H a) (e/2) (half_pos epos) with ⟨n, hn⟩, | |
/- Second step: use the norm control at index n to conclude -/ | |
have C : dist b (x n) - dist a (x n) = embedding_of_subset x b n - embedding_of_subset x a n := | |
by { simp only [embedding_of_subset_coe, sub_sub_sub_cancel_right] }, | |
have := calc | |
dist a b ≤ dist a (x n) + dist (x n) b : dist_triangle _ _ _ | |
... = 2 * dist a (x n) + (dist b (x n) - dist a (x n)) : by { simp [dist_comm], ring } | |
... ≤ 2 * dist a (x n) + |dist b (x n) - dist a (x n)| : | |
by apply_rules [add_le_add_left, le_abs_self] | |
... ≤ 2 * (e/2) + |embedding_of_subset x b n - embedding_of_subset x a n| : | |
begin rw C, apply_rules [add_le_add, mul_le_mul_of_nonneg_left, hn.le, le_refl], norm_num end | |
... ≤ 2 * (e/2) + dist (embedding_of_subset x b) (embedding_of_subset x a) : | |
begin | |
have : |embedding_of_subset x b n - embedding_of_subset x a n| | |
≤ dist (embedding_of_subset x b) (embedding_of_subset x a), | |
{ simpa [dist_eq_norm] using lp.norm_apply_le_norm ennreal.top_ne_zero | |
(embedding_of_subset x b - embedding_of_subset x a) n }, | |
nlinarith, | |
end | |
... = dist (embedding_of_subset x b) (embedding_of_subset x a) + e : by ring, | |
simpa [dist_comm] using this | |
end | |
/-- Every separable metric space embeds isometrically in `ℓ_infty_ℝ`. -/ | |
theorem exists_isometric_embedding (α : Type u) [metric_space α] [separable_space α] : | |
∃(f : α → ℓ_infty_ℝ), isometry f := | |
begin | |
cases (univ : set α).eq_empty_or_nonempty with h h, | |
{ use (λ_, 0), assume x, exact absurd h (nonempty.ne_empty ⟨x, mem_univ x⟩) }, | |
{ /- We construct a map x : ℕ → α with dense image -/ | |
rcases h with ⟨basepoint⟩, | |
haveI : inhabited α := ⟨basepoint⟩, | |
have : ∃s:set α, s.countable ∧ dense s := exists_countable_dense α, | |
rcases this with ⟨S, ⟨S_countable, S_dense⟩⟩, | |
rcases set.countable_iff_exists_subset_range.1 S_countable with ⟨x, x_range⟩, | |
/- Use embedding_of_subset to construct the desired isometry -/ | |
exact ⟨embedding_of_subset x, embedding_of_subset_isometry x (S_dense.mono x_range)⟩ } | |
end | |
end Kuratowski_embedding | |
open topological_space Kuratowski_embedding | |
/-- The Kuratowski embedding is an isometric embedding of a separable metric space in `ℓ^∞(ℝ)`. -/ | |
def Kuratowski_embedding (α : Type u) [metric_space α] [separable_space α] : α → ℓ_infty_ℝ := | |
classical.some (Kuratowski_embedding.exists_isometric_embedding α) | |
/-- The Kuratowski embedding is an isometry. -/ | |
protected lemma Kuratowski_embedding.isometry (α : Type u) [metric_space α] [separable_space α] : | |
isometry (Kuratowski_embedding α) := | |
classical.some_spec (exists_isometric_embedding α) | |
/-- Version of the Kuratowski embedding for nonempty compacts -/ | |
def nonempty_compacts.Kuratowski_embedding (α : Type u) [metric_space α] [compact_space α] | |
[nonempty α] : | |
nonempty_compacts ℓ_infty_ℝ := | |
{ carrier := range (Kuratowski_embedding α), | |
compact' := is_compact_range (Kuratowski_embedding.isometry α).continuous, | |
nonempty' := range_nonempty _ } | |