Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
5.21 kB
/-
Copyright (c) 2018 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import analysis.normed_space.lp_space
import topology.sets.compacts
/-!
# The Kuratowski embedding
Any separable metric space can be embedded isometrically in `ℓ^∞(ℝ)`.
-/
noncomputable theory
open set metric topological_space
open_locale ennreal
local notation `ℓ_infty_ℝ`:= lp (λ n : ℕ, ℝ) ∞
universes u v w
variables {α : Type u} {β : Type v} {γ : Type w}
namespace Kuratowski_embedding
/-! ### Any separable metric space can be embedded isometrically in ℓ^∞(ℝ) -/
variables {f g : ℓ_infty_ℝ} {n : ℕ} {C : ℝ} [metric_space α] (x : ℕ → α) (a b : α)
/-- A metric space can be embedded in `l^∞(ℝ)` via the distances to points in
a fixed countable set, if this set is dense. This map is given in `Kuratowski_embedding`,
without density assumptions. -/
def embedding_of_subset : ℓ_infty_ℝ :=
⟨ λ n, dist a (x n) - dist (x 0) (x n),
begin
apply mem_ℓp_infty,
use dist a (x 0),
rintros - ⟨n, rfl⟩,
exact abs_dist_sub_le _ _ _
end
lemma embedding_of_subset_coe : embedding_of_subset x a n = dist a (x n) - dist (x 0) (x n) := rfl
/-- The embedding map is always a semi-contraction. -/
lemma embedding_of_subset_dist_le (a b : α) :
dist (embedding_of_subset x a) (embedding_of_subset x b) ≤ dist a b :=
begin
refine lp.norm_le_of_forall_le dist_nonneg (λn, _),
simp only [lp.coe_fn_sub, pi.sub_apply, embedding_of_subset_coe, real.dist_eq],
convert abs_dist_sub_le a b (x n) using 2,
ring
end
/-- When the reference set is dense, the embedding map is an isometry on its image. -/
lemma embedding_of_subset_isometry (H : dense_range x) : isometry (embedding_of_subset x) :=
begin
refine isometry.of_dist_eq (λa b, _),
refine (embedding_of_subset_dist_le x a b).antisymm (le_of_forall_pos_le_add (λe epos, _)),
/- First step: find n with dist a (x n) < e -/
rcases metric.mem_closure_range_iff.1 (H a) (e/2) (half_pos epos) with ⟨n, hn⟩,
/- Second step: use the norm control at index n to conclude -/
have C : dist b (x n) - dist a (x n) = embedding_of_subset x b n - embedding_of_subset x a n :=
by { simp only [embedding_of_subset_coe, sub_sub_sub_cancel_right] },
have := calc
dist a b ≤ dist a (x n) + dist (x n) b : dist_triangle _ _ _
... = 2 * dist a (x n) + (dist b (x n) - dist a (x n)) : by { simp [dist_comm], ring }
... ≤ 2 * dist a (x n) + |dist b (x n) - dist a (x n)| :
by apply_rules [add_le_add_left, le_abs_self]
... ≤ 2 * (e/2) + |embedding_of_subset x b n - embedding_of_subset x a n| :
begin rw C, apply_rules [add_le_add, mul_le_mul_of_nonneg_left, hn.le, le_refl], norm_num end
... ≤ 2 * (e/2) + dist (embedding_of_subset x b) (embedding_of_subset x a) :
begin
have : |embedding_of_subset x b n - embedding_of_subset x a n|
≤ dist (embedding_of_subset x b) (embedding_of_subset x a),
{ simpa [dist_eq_norm] using lp.norm_apply_le_norm ennreal.top_ne_zero
(embedding_of_subset x b - embedding_of_subset x a) n },
nlinarith,
end
... = dist (embedding_of_subset x b) (embedding_of_subset x a) + e : by ring,
simpa [dist_comm] using this
end
/-- Every separable metric space embeds isometrically in `ℓ_infty_ℝ`. -/
theorem exists_isometric_embedding (α : Type u) [metric_space α] [separable_space α] :
∃(f : α → ℓ_infty_ℝ), isometry f :=
begin
cases (univ : set α).eq_empty_or_nonempty with h h,
{ use (λ_, 0), assume x, exact absurd h (nonempty.ne_empty ⟨x, mem_univ x⟩) },
{ /- We construct a map x : ℕ → α with dense image -/
rcases h with ⟨basepoint⟩,
haveI : inhabited α := ⟨basepoint⟩,
have : ∃s:set α, s.countable ∧ dense s := exists_countable_dense α,
rcases this with ⟨S, ⟨S_countable, S_dense⟩⟩,
rcases set.countable_iff_exists_subset_range.1 S_countable with ⟨x, x_range⟩,
/- Use embedding_of_subset to construct the desired isometry -/
exact ⟨embedding_of_subset x, embedding_of_subset_isometry x (S_dense.mono x_range)⟩ }
end
end Kuratowski_embedding
open topological_space Kuratowski_embedding
/-- The Kuratowski embedding is an isometric embedding of a separable metric space in `ℓ^∞(ℝ)`. -/
def Kuratowski_embedding (α : Type u) [metric_space α] [separable_space α] : α → ℓ_infty_ℝ :=
classical.some (Kuratowski_embedding.exists_isometric_embedding α)
/-- The Kuratowski embedding is an isometry. -/
protected lemma Kuratowski_embedding.isometry (α : Type u) [metric_space α] [separable_space α] :
isometry (Kuratowski_embedding α) :=
classical.some_spec (exists_isometric_embedding α)
/-- Version of the Kuratowski embedding for nonempty compacts -/
def nonempty_compacts.Kuratowski_embedding (α : Type u) [metric_space α] [compact_space α]
[nonempty α] :
nonempty_compacts ℓ_infty_ℝ :=
{ carrier := range (Kuratowski_embedding α),
compact' := is_compact_range (Kuratowski_embedding.isometry α).continuous,
nonempty' := range_nonempty _ }