/- Copyright (c) 2018 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import analysis.normed_space.lp_space import topology.sets.compacts /-! # The Kuratowski embedding Any separable metric space can be embedded isometrically in `ℓ^∞(ℝ)`. -/ noncomputable theory open set metric topological_space open_locale ennreal local notation `ℓ_infty_ℝ`:= lp (λ n : ℕ, ℝ) ∞ universes u v w variables {α : Type u} {β : Type v} {γ : Type w} namespace Kuratowski_embedding /-! ### Any separable metric space can be embedded isometrically in ℓ^∞(ℝ) -/ variables {f g : ℓ_infty_ℝ} {n : ℕ} {C : ℝ} [metric_space α] (x : ℕ → α) (a b : α) /-- A metric space can be embedded in `l^∞(ℝ)` via the distances to points in a fixed countable set, if this set is dense. This map is given in `Kuratowski_embedding`, without density assumptions. -/ def embedding_of_subset : ℓ_infty_ℝ := ⟨ λ n, dist a (x n) - dist (x 0) (x n), begin apply mem_ℓp_infty, use dist a (x 0), rintros - ⟨n, rfl⟩, exact abs_dist_sub_le _ _ _ end ⟩ lemma embedding_of_subset_coe : embedding_of_subset x a n = dist a (x n) - dist (x 0) (x n) := rfl /-- The embedding map is always a semi-contraction. -/ lemma embedding_of_subset_dist_le (a b : α) : dist (embedding_of_subset x a) (embedding_of_subset x b) ≤ dist a b := begin refine lp.norm_le_of_forall_le dist_nonneg (λn, _), simp only [lp.coe_fn_sub, pi.sub_apply, embedding_of_subset_coe, real.dist_eq], convert abs_dist_sub_le a b (x n) using 2, ring end /-- When the reference set is dense, the embedding map is an isometry on its image. -/ lemma embedding_of_subset_isometry (H : dense_range x) : isometry (embedding_of_subset x) := begin refine isometry.of_dist_eq (λa b, _), refine (embedding_of_subset_dist_le x a b).antisymm (le_of_forall_pos_le_add (λe epos, _)), /- First step: find n with dist a (x n) < e -/ rcases metric.mem_closure_range_iff.1 (H a) (e/2) (half_pos epos) with ⟨n, hn⟩, /- Second step: use the norm control at index n to conclude -/ have C : dist b (x n) - dist a (x n) = embedding_of_subset x b n - embedding_of_subset x a n := by { simp only [embedding_of_subset_coe, sub_sub_sub_cancel_right] }, have := calc dist a b ≤ dist a (x n) + dist (x n) b : dist_triangle _ _ _ ... = 2 * dist a (x n) + (dist b (x n) - dist a (x n)) : by { simp [dist_comm], ring } ... ≤ 2 * dist a (x n) + |dist b (x n) - dist a (x n)| : by apply_rules [add_le_add_left, le_abs_self] ... ≤ 2 * (e/2) + |embedding_of_subset x b n - embedding_of_subset x a n| : begin rw C, apply_rules [add_le_add, mul_le_mul_of_nonneg_left, hn.le, le_refl], norm_num end ... ≤ 2 * (e/2) + dist (embedding_of_subset x b) (embedding_of_subset x a) : begin have : |embedding_of_subset x b n - embedding_of_subset x a n| ≤ dist (embedding_of_subset x b) (embedding_of_subset x a), { simpa [dist_eq_norm] using lp.norm_apply_le_norm ennreal.top_ne_zero (embedding_of_subset x b - embedding_of_subset x a) n }, nlinarith, end ... = dist (embedding_of_subset x b) (embedding_of_subset x a) + e : by ring, simpa [dist_comm] using this end /-- Every separable metric space embeds isometrically in `ℓ_infty_ℝ`. -/ theorem exists_isometric_embedding (α : Type u) [metric_space α] [separable_space α] : ∃(f : α → ℓ_infty_ℝ), isometry f := begin cases (univ : set α).eq_empty_or_nonempty with h h, { use (λ_, 0), assume x, exact absurd h (nonempty.ne_empty ⟨x, mem_univ x⟩) }, { /- We construct a map x : ℕ → α with dense image -/ rcases h with ⟨basepoint⟩, haveI : inhabited α := ⟨basepoint⟩, have : ∃s:set α, s.countable ∧ dense s := exists_countable_dense α, rcases this with ⟨S, ⟨S_countable, S_dense⟩⟩, rcases set.countable_iff_exists_subset_range.1 S_countable with ⟨x, x_range⟩, /- Use embedding_of_subset to construct the desired isometry -/ exact ⟨embedding_of_subset x, embedding_of_subset_isometry x (S_dense.mono x_range)⟩ } end end Kuratowski_embedding open topological_space Kuratowski_embedding /-- The Kuratowski embedding is an isometric embedding of a separable metric space in `ℓ^∞(ℝ)`. -/ def Kuratowski_embedding (α : Type u) [metric_space α] [separable_space α] : α → ℓ_infty_ℝ := classical.some (Kuratowski_embedding.exists_isometric_embedding α) /-- The Kuratowski embedding is an isometry. -/ protected lemma Kuratowski_embedding.isometry (α : Type u) [metric_space α] [separable_space α] : isometry (Kuratowski_embedding α) := classical.some_spec (exists_isometric_embedding α) /-- Version of the Kuratowski embedding for nonempty compacts -/ def nonempty_compacts.Kuratowski_embedding (α : Type u) [metric_space α] [compact_space α] [nonempty α] : nonempty_compacts ℓ_infty_ℝ := { carrier := range (Kuratowski_embedding α), compact' := is_compact_range (Kuratowski_embedding.isometry α).continuous, nonempty' := range_nonempty _ }