Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
I think it's all done!
fc5e983
raw
history blame
19.9 kB
/-
Copyright (c) 2018 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Isometries of emetric and metric spaces
Authors: Sébastien Gouëzel
-/
import topology.metric_space.antilipschitz
/-!
# Isometries
We define isometries, i.e., maps between emetric spaces that preserve
the edistance (on metric spaces, these are exactly the maps that preserve distances),
and prove their basic properties. We also introduce isometric bijections.
Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the
theory for `pseudo_metric_space` and we specialize to `metric_space` when needed.
-/
noncomputable theory
universes u v w
variables {α : Type u} {β : Type v} {γ : Type w}
open function set
open_locale topological_space ennreal
/-- An isometry (also known as isometric embedding) is a map preserving the edistance
between pseudoemetric spaces, or equivalently the distance between pseudometric space. -/
def isometry [pseudo_emetric_space α] [pseudo_emetric_space β] (f : α → β) : Prop :=
∀x1 x2 : α, edist (f x1) (f x2) = edist x1 x2
/-- On pseudometric spaces, a map is an isometry if and only if it preserves nonnegative
distances. -/
lemma isometry_iff_nndist_eq [pseudo_metric_space α] [pseudo_metric_space β] {f : α → β} :
isometry f ↔ (∀x y, nndist (f x) (f y) = nndist x y) :=
by simp only [isometry, edist_nndist, ennreal.coe_eq_coe]
/-- On pseudometric spaces, a map is an isometry if and only if it preserves distances. -/
lemma isometry_iff_dist_eq [pseudo_metric_space α] [pseudo_metric_space β] {f : α → β} :
isometry f ↔ (∀x y, dist (f x) (f y) = dist x y) :=
by simp only [isometry_iff_nndist_eq, ← coe_nndist, nnreal.coe_eq]
/-- An isometry preserves distances. -/
alias isometry_iff_dist_eq ↔ isometry.dist_eq _
/-- A map that preserves distances is an isometry -/
alias isometry_iff_dist_eq ↔ _ isometry.of_dist_eq
/-- An isometry preserves non-negative distances. -/
alias isometry_iff_nndist_eq ↔ isometry.nndist_eq _
/-- A map that preserves non-negative distances is an isometry. -/
alias isometry_iff_nndist_eq ↔ _ isometry.of_nndist_eq
namespace isometry
section pseudo_emetric_isometry
variables [pseudo_emetric_space α] [pseudo_emetric_space β] [pseudo_emetric_space γ]
variables {f : α → β} {x y z : α} {s : set α}
/-- An isometry preserves edistances. -/
theorem edist_eq (hf : isometry f) (x y : α) : edist (f x) (f y) = edist x y := hf x y
lemma lipschitz (h : isometry f) : lipschitz_with 1 f :=
lipschitz_with.of_edist_le $ λ x y, (h x y).le
lemma antilipschitz (h : isometry f) : antilipschitz_with 1 f :=
λ x y, by simp only [h x y, ennreal.coe_one, one_mul, le_refl]
/-- Any map on a subsingleton is an isometry -/
@[nontriviality] theorem _root_.isometry_subsingleton [subsingleton α] : isometry f :=
λx y, by rw subsingleton.elim x y; simp
/-- The identity is an isometry -/
lemma _root_.isometry_id : isometry (id : α → α) := λ x y, rfl
/-- The composition of isometries is an isometry -/
theorem comp {g : β → γ} {f : α → β} (hg : isometry g) (hf : isometry f) : isometry (g ∘ f) :=
λ x y, (hg _ _).trans (hf _ _)
/-- An isometry from a metric space is a uniform continuous map -/
protected theorem uniform_continuous (hf : isometry f) : uniform_continuous f :=
hf.lipschitz.uniform_continuous
/-- An isometry from a metric space is a uniform inducing map -/
protected theorem uniform_inducing (hf : isometry f) : uniform_inducing f :=
hf.antilipschitz.uniform_inducing hf.uniform_continuous
lemma tendsto_nhds_iff {ι : Type*} {f : α → β} {g : ι → α} {a : filter ι} {b : α}
(hf : isometry f) :
filter.tendsto g a (𝓝 b) ↔ filter.tendsto (f ∘ g) a (𝓝 (f b)) :=
hf.uniform_inducing.inducing.tendsto_nhds_iff
/-- An isometry is continuous. -/
protected lemma continuous (hf : isometry f) : continuous f := hf.lipschitz.continuous
/-- The right inverse of an isometry is an isometry. -/
lemma right_inv {f : α → β} {g : β → α} (h : isometry f) (hg : right_inverse g f) :
isometry g :=
λ x y, by rw [← h, hg _, hg _]
lemma preimage_emetric_closed_ball (h : isometry f) (x : α) (r : ℝ≥0∞) :
f ⁻¹' (emetric.closed_ball (f x) r) = emetric.closed_ball x r :=
by { ext y, simp [h.edist_eq] }
lemma preimage_emetric_ball (h : isometry f) (x : α) (r : ℝ≥0∞) :
f ⁻¹' (emetric.ball (f x) r) = emetric.ball x r :=
by { ext y, simp [h.edist_eq] }
/-- Isometries preserve the diameter in pseudoemetric spaces. -/
lemma ediam_image (hf : isometry f) (s : set α) : emetric.diam (f '' s) = emetric.diam s :=
eq_of_forall_ge_iff $ λ d,
by simp only [emetric.diam_le_iff, ball_image_iff, hf.edist_eq]
lemma ediam_range (hf : isometry f) : emetric.diam (range f) = emetric.diam (univ : set α) :=
by { rw ← image_univ, exact hf.ediam_image univ }
lemma maps_to_emetric_ball (hf : isometry f) (x : α) (r : ℝ≥0∞) :
maps_to f (emetric.ball x r) (emetric.ball (f x) r) :=
(hf.preimage_emetric_ball x r).ge
lemma maps_to_emetric_closed_ball (hf : isometry f) (x : α) (r : ℝ≥0∞) :
maps_to f (emetric.closed_ball x r) (emetric.closed_ball (f x) r) :=
(hf.preimage_emetric_closed_ball x r).ge
/-- The injection from a subtype is an isometry -/
lemma _root_.isometry_subtype_coe {s : set α} : isometry (coe : s → α) :=
λx y, rfl
lemma comp_continuous_on_iff {γ} [topological_space γ] (hf : isometry f) {g : γ → α} {s : set γ} :
continuous_on (f ∘ g) s ↔ continuous_on g s :=
hf.uniform_inducing.inducing.continuous_on_iff.symm
lemma comp_continuous_iff {γ} [topological_space γ] (hf : isometry f) {g : γ → α} :
continuous (f ∘ g) ↔ continuous g :=
hf.uniform_inducing.inducing.continuous_iff.symm
end pseudo_emetric_isometry --section
section emetric_isometry
variables [emetric_space α] [pseudo_emetric_space β] {f : α → β}
/-- An isometry from an emetric space is injective -/
protected lemma injective (h : isometry f) : injective f := h.antilipschitz.injective
/-- An isometry from an emetric space is a uniform embedding -/
protected theorem uniform_embedding (hf : isometry f) : uniform_embedding f :=
hf.antilipschitz.uniform_embedding hf.lipschitz.uniform_continuous
/-- An isometry from an emetric space is an embedding -/
protected theorem embedding (hf : isometry f) : embedding f :=
hf.uniform_embedding.embedding
/-- An isometry from a complete emetric space is a closed embedding -/
theorem closed_embedding [complete_space α] [emetric_space γ]
{f : α → γ} (hf : isometry f) : closed_embedding f :=
hf.antilipschitz.closed_embedding hf.lipschitz.uniform_continuous
end emetric_isometry --section
section pseudo_metric_isometry
variables [pseudo_metric_space α] [pseudo_metric_space β] {f : α → β}
/-- An isometry preserves the diameter in pseudometric spaces. -/
lemma diam_image (hf : isometry f) (s : set α) : metric.diam (f '' s) = metric.diam s :=
by rw [metric.diam, metric.diam, hf.ediam_image]
lemma diam_range (hf : isometry f) : metric.diam (range f) = metric.diam (univ : set α) :=
by { rw ← image_univ, exact hf.diam_image univ }
lemma preimage_set_of_dist (hf : isometry f) (x : α) (p : ℝ → Prop) :
f ⁻¹' {y | p (dist y (f x))} = {y | p (dist y x)} :=
by { ext y, simp [hf.dist_eq] }
lemma preimage_closed_ball (hf : isometry f) (x : α) (r : ℝ) :
f ⁻¹' (metric.closed_ball (f x) r) = metric.closed_ball x r :=
hf.preimage_set_of_dist x (≤ r)
lemma preimage_ball (hf : isometry f) (x : α) (r : ℝ) :
f ⁻¹' (metric.ball (f x) r) = metric.ball x r :=
hf.preimage_set_of_dist x (< r)
lemma preimage_sphere (hf : isometry f) (x : α) (r : ℝ) :
f ⁻¹' (metric.sphere (f x) r) = metric.sphere x r :=
hf.preimage_set_of_dist x (= r)
lemma maps_to_ball (hf : isometry f) (x : α) (r : ℝ) :
maps_to f (metric.ball x r) (metric.ball (f x) r) :=
(hf.preimage_ball x r).ge
lemma maps_to_sphere (hf : isometry f) (x : α) (r : ℝ) :
maps_to f (metric.sphere x r) (metric.sphere (f x) r) :=
(hf.preimage_sphere x r).ge
lemma maps_to_closed_ball (hf : isometry f) (x : α) (r : ℝ) :
maps_to f (metric.closed_ball x r) (metric.closed_ball (f x) r) :=
(hf.preimage_closed_ball x r).ge
end pseudo_metric_isometry -- section
end isometry -- namespace
/-- A uniform embedding from a uniform space to a metric space is an isometry with respect to the
induced metric space structure on the source space. -/
lemma uniform_embedding.to_isometry {α β} [uniform_space α] [metric_space β] {f : α → β}
(h : uniform_embedding f) :
@isometry α β
(@pseudo_metric_space.to_pseudo_emetric_space α
(@metric_space.to_pseudo_metric_space α (h.comap_metric_space f)))
(by apply_instance) f :=
begin
apply isometry.of_dist_eq,
assume x y,
refl
end
/-- An embedding from a topological space to a metric space is an isometry with respect to the
induced metric space structure on the source space. -/
lemma embedding.to_isometry {α β} [topological_space α] [metric_space β] {f : α → β}
(h : embedding f) :
@isometry α β
(@pseudo_metric_space.to_pseudo_emetric_space α
(@metric_space.to_pseudo_metric_space α (h.comap_metric_space f)))
(by apply_instance) f :=
begin
apply isometry.of_dist_eq,
assume x y,
refl
end
/-- `α` and `β` are isometric if there is an isometric bijection between them. -/
@[nolint has_nonempty_instance] -- such a bijection need not exist
structure isometric (α : Type*) (β : Type*) [pseudo_emetric_space α] [pseudo_emetric_space β]
extends α ≃ β :=
(isometry_to_fun : isometry to_fun)
infix ` ≃ᵢ `:25 := isometric
namespace isometric
section pseudo_emetric_space
variables [pseudo_emetric_space α] [pseudo_emetric_space β] [pseudo_emetric_space γ]
instance : has_coe_to_fun (α ≃ᵢ β) (λ _, α → β) := ⟨λe, e.to_equiv⟩
lemma coe_eq_to_equiv (h : α ≃ᵢ β) (a : α) : h a = h.to_equiv a := rfl
@[simp] lemma coe_to_equiv (h : α ≃ᵢ β) : ⇑h.to_equiv = h := rfl
protected lemma isometry (h : α ≃ᵢ β) : isometry h := h.isometry_to_fun
protected lemma bijective (h : α ≃ᵢ β) : bijective h := h.to_equiv.bijective
protected lemma injective (h : α ≃ᵢ β) : injective h := h.to_equiv.injective
protected lemma surjective (h : α ≃ᵢ β) : surjective h := h.to_equiv.surjective
protected lemma edist_eq (h : α ≃ᵢ β) (x y : α) : edist (h x) (h y) = edist x y :=
h.isometry.edist_eq x y
protected lemma dist_eq {α β : Type*} [pseudo_metric_space α] [pseudo_metric_space β] (h : α ≃ᵢ β)
(x y : α) : dist (h x) (h y) = dist x y :=
h.isometry.dist_eq x y
protected lemma nndist_eq {α β : Type*} [pseudo_metric_space α] [pseudo_metric_space β] (h : α ≃ᵢ β)
(x y : α) : nndist (h x) (h y) = nndist x y :=
h.isometry.nndist_eq x y
protected lemma continuous (h : α ≃ᵢ β) : continuous h := h.isometry.continuous
@[simp] lemma ediam_image (h : α ≃ᵢ β) (s : set α) : emetric.diam (h '' s) = emetric.diam s :=
h.isometry.ediam_image s
lemma to_equiv_inj : ∀ ⦃h₁ h₂ : α ≃ᵢ β⦄, (h₁.to_equiv = h₂.to_equiv) → h₁ = h₂
| ⟨e₁, h₁⟩ ⟨e₂, h₂⟩ H := by { dsimp at H, subst e₁ }
@[ext] lemma ext ⦃h₁ h₂ : α ≃ᵢ β⦄ (H : ∀ x, h₁ x = h₂ x) : h₁ = h₂ :=
to_equiv_inj $ equiv.ext H
/-- Alternative constructor for isometric bijections,
taking as input an isometry, and a right inverse. -/
def mk' {α : Type u} [emetric_space α] (f : α → β) (g : β → α) (hfg : ∀ x, f (g x) = x)
(hf : isometry f) : α ≃ᵢ β :=
{ to_fun := f,
inv_fun := g,
left_inv := λ x, hf.injective $ hfg _,
right_inv := hfg,
isometry_to_fun := hf }
/-- The identity isometry of a space. -/
protected def refl (α : Type*) [pseudo_emetric_space α] : α ≃ᵢ α :=
{ isometry_to_fun := isometry_id, .. equiv.refl α }
/-- The composition of two isometric isomorphisms, as an isometric isomorphism. -/
protected def trans (h₁ : α ≃ᵢ β) (h₂ : β ≃ᵢ γ) : α ≃ᵢ γ :=
{ isometry_to_fun := h₂.isometry_to_fun.comp h₁.isometry_to_fun,
.. equiv.trans h₁.to_equiv h₂.to_equiv }
@[simp] lemma trans_apply (h₁ : α ≃ᵢ β) (h₂ : β ≃ᵢ γ) (x : α) : h₁.trans h₂ x = h₂ (h₁ x) := rfl
/-- The inverse of an isometric isomorphism, as an isometric isomorphism. -/
protected def symm (h : α ≃ᵢ β) : β ≃ᵢ α :=
{ isometry_to_fun := h.isometry.right_inv h.right_inv,
to_equiv := h.to_equiv.symm }
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case,
because it is a composition of multiple projections. -/
def simps.apply (h : α ≃ᵢ β) : α → β := h
/-- See Note [custom simps projection] -/
def simps.symm_apply (h : α ≃ᵢ β) : β → α := h.symm
initialize_simps_projections isometric
(to_equiv_to_fun → apply, to_equiv_inv_fun → symm_apply)
@[simp] lemma symm_symm (h : α ≃ᵢ β) : h.symm.symm = h := to_equiv_inj h.to_equiv.symm_symm
@[simp] lemma apply_symm_apply (h : α ≃ᵢ β) (y : β) : h (h.symm y) = y :=
h.to_equiv.apply_symm_apply y
@[simp] lemma symm_apply_apply (h : α ≃ᵢ β) (x : α) : h.symm (h x) = x :=
h.to_equiv.symm_apply_apply x
lemma symm_apply_eq (h : α ≃ᵢ β) {x : α} {y : β} :
h.symm y = x ↔ y = h x :=
h.to_equiv.symm_apply_eq
lemma eq_symm_apply (h : α ≃ᵢ β) {x : α} {y : β} :
x = h.symm y ↔ h x = y :=
h.to_equiv.eq_symm_apply
lemma symm_comp_self (h : α ≃ᵢ β) : ⇑h.symm ∘ ⇑h = id :=
funext $ assume a, h.to_equiv.left_inv a
lemma self_comp_symm (h : α ≃ᵢ β) : ⇑h ∘ ⇑h.symm = id :=
funext $ assume a, h.to_equiv.right_inv a
@[simp] lemma range_eq_univ (h : α ≃ᵢ β) : range h = univ :=
h.to_equiv.range_eq_univ
lemma image_symm (h : α ≃ᵢ β) : image h.symm = preimage h :=
image_eq_preimage_of_inverse h.symm.to_equiv.left_inv h.symm.to_equiv.right_inv
lemma preimage_symm (h : α ≃ᵢ β) : preimage h.symm = image h :=
(image_eq_preimage_of_inverse h.to_equiv.left_inv h.to_equiv.right_inv).symm
@[simp] lemma symm_trans_apply (h₁ : α ≃ᵢ β) (h₂ : β ≃ᵢ γ) (x : γ) :
(h₁.trans h₂).symm x = h₁.symm (h₂.symm x) := rfl
lemma ediam_univ (h : α ≃ᵢ β) : emetric.diam (univ : set α) = emetric.diam (univ : set β) :=
by rw [← h.range_eq_univ, h.isometry.ediam_range]
@[simp] lemma ediam_preimage (h : α ≃ᵢ β) (s : set β) : emetric.diam (h ⁻¹' s) = emetric.diam s :=
by rw [← image_symm, ediam_image]
@[simp] lemma preimage_emetric_ball (h : α ≃ᵢ β) (x : β) (r : ℝ≥0∞) :
h ⁻¹' (emetric.ball x r) = emetric.ball (h.symm x) r :=
by rw [← h.isometry.preimage_emetric_ball (h.symm x) r, h.apply_symm_apply]
@[simp] lemma preimage_emetric_closed_ball (h : α ≃ᵢ β) (x : β) (r : ℝ≥0∞) :
h ⁻¹' (emetric.closed_ball x r) = emetric.closed_ball (h.symm x) r :=
by rw [← h.isometry.preimage_emetric_closed_ball (h.symm x) r, h.apply_symm_apply]
@[simp] lemma image_emetric_ball (h : α ≃ᵢ β) (x : α) (r : ℝ≥0∞) :
h '' (emetric.ball x r) = emetric.ball (h x) r :=
by rw [← h.preimage_symm, h.symm.preimage_emetric_ball, symm_symm]
@[simp] lemma image_emetric_closed_ball (h : α ≃ᵢ β) (x : α) (r : ℝ≥0∞) :
h '' (emetric.closed_ball x r) = emetric.closed_ball (h x) r :=
by rw [← h.preimage_symm, h.symm.preimage_emetric_closed_ball, symm_symm]
/-- The (bundled) homeomorphism associated to an isometric isomorphism. -/
@[simps to_equiv] protected def to_homeomorph (h : α ≃ᵢ β) : α ≃ₜ β :=
{ continuous_to_fun := h.continuous,
continuous_inv_fun := h.symm.continuous,
to_equiv := h.to_equiv }
@[simp] lemma coe_to_homeomorph (h : α ≃ᵢ β) : ⇑(h.to_homeomorph) = h := rfl
@[simp] lemma coe_to_homeomorph_symm (h : α ≃ᵢ β) : ⇑(h.to_homeomorph.symm) = h.symm := rfl
@[simp] lemma comp_continuous_on_iff {γ} [topological_space γ] (h : α ≃ᵢ β)
{f : γ → α} {s : set γ} :
continuous_on (h ∘ f) s ↔ continuous_on f s :=
h.to_homeomorph.comp_continuous_on_iff _ _
@[simp] lemma comp_continuous_iff {γ} [topological_space γ] (h : α ≃ᵢ β) {f : γ → α} :
continuous (h ∘ f) ↔ continuous f :=
h.to_homeomorph.comp_continuous_iff
@[simp] lemma comp_continuous_iff' {γ} [topological_space γ] (h : α ≃ᵢ β) {f : β → γ} :
continuous (f ∘ h) ↔ continuous f :=
h.to_homeomorph.comp_continuous_iff'
/-- The group of isometries. -/
instance : group (α ≃ᵢ α) :=
{ one := isometric.refl _,
mul := λ e₁ e₂, e₂.trans e₁,
inv := isometric.symm,
mul_assoc := λ e₁ e₂ e₃, rfl,
one_mul := λ e, ext $ λ _, rfl,
mul_one := λ e, ext $ λ _, rfl,
mul_left_inv := λ e, ext e.symm_apply_apply }
@[simp] lemma coe_one : ⇑(1 : α ≃ᵢ α) = id := rfl
@[simp] lemma coe_mul (e₁ e₂ : α ≃ᵢ α) : ⇑(e₁ * e₂) = e₁ ∘ e₂ := rfl
lemma mul_apply (e₁ e₂ : α ≃ᵢ α) (x : α) : (e₁ * e₂) x = e₁ (e₂ x) := rfl
@[simp] lemma inv_apply_self (e : α ≃ᵢ α) (x: α) : e⁻¹ (e x) = x := e.symm_apply_apply x
@[simp] lemma apply_inv_self (e : α ≃ᵢ α) (x: α) : e (e⁻¹ x) = x := e.apply_symm_apply x
protected lemma complete_space [complete_space β] (e : α ≃ᵢ β) : complete_space α :=
complete_space_of_is_complete_univ $ is_complete_of_complete_image e.isometry.uniform_inducing $
by rwa [set.image_univ, isometric.range_eq_univ, ← complete_space_iff_is_complete_univ]
lemma complete_space_iff (e : α ≃ᵢ β) : complete_space α ↔ complete_space β :=
by { split; introI H, exacts [e.symm.complete_space, e.complete_space] }
end pseudo_emetric_space
section pseudo_metric_space
variables [pseudo_metric_space α] [pseudo_metric_space β] (h : α ≃ᵢ β)
@[simp] lemma diam_image (s : set α) : metric.diam (h '' s) = metric.diam s :=
h.isometry.diam_image s
@[simp] lemma diam_preimage (s : set β) : metric.diam (h ⁻¹' s) = metric.diam s :=
by rw [← image_symm, diam_image]
lemma diam_univ : metric.diam (univ : set α) = metric.diam (univ : set β) :=
congr_arg ennreal.to_real h.ediam_univ
@[simp] lemma preimage_ball (h : α ≃ᵢ β) (x : β) (r : ℝ) :
h ⁻¹' (metric.ball x r) = metric.ball (h.symm x) r :=
by rw [← h.isometry.preimage_ball (h.symm x) r, h.apply_symm_apply]
@[simp] lemma preimage_sphere (h : α ≃ᵢ β) (x : β) (r : ℝ) :
h ⁻¹' (metric.sphere x r) = metric.sphere (h.symm x) r :=
by rw [← h.isometry.preimage_sphere (h.symm x) r, h.apply_symm_apply]
@[simp] lemma preimage_closed_ball (h : α ≃ᵢ β) (x : β) (r : ℝ) :
h ⁻¹' (metric.closed_ball x r) = metric.closed_ball (h.symm x) r :=
by rw [← h.isometry.preimage_closed_ball (h.symm x) r, h.apply_symm_apply]
@[simp] lemma image_ball (h : α ≃ᵢ β) (x : α) (r : ℝ) :
h '' (metric.ball x r) = metric.ball (h x) r :=
by rw [← h.preimage_symm, h.symm.preimage_ball, symm_symm]
@[simp] lemma image_sphere (h : α ≃ᵢ β) (x : α) (r : ℝ) :
h '' (metric.sphere x r) = metric.sphere (h x) r :=
by rw [← h.preimage_symm, h.symm.preimage_sphere, symm_symm]
@[simp] lemma image_closed_ball (h : α ≃ᵢ β) (x : α) (r : ℝ) :
h '' (metric.closed_ball x r) = metric.closed_ball (h x) r :=
by rw [← h.preimage_symm, h.symm.preimage_closed_ball, symm_symm]
end pseudo_metric_space
end isometric
/-- An isometry induces an isometric isomorphism between the source space and the
range of the isometry. -/
@[simps to_equiv apply { simp_rhs := tt }]
def isometry.isometric_on_range [emetric_space α] [pseudo_emetric_space β] {f : α → β}
(h : isometry f) : α ≃ᵢ range f :=
{ isometry_to_fun := λx y, by simpa [subtype.edist_eq] using h x y,
to_equiv := equiv.of_injective f h.injective }