Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2018 Sébastien Gouëzel. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Isometries of emetric and metric spaces | |
Authors: Sébastien Gouëzel | |
-/ | |
import topology.metric_space.antilipschitz | |
/-! | |
# Isometries | |
We define isometries, i.e., maps between emetric spaces that preserve | |
the edistance (on metric spaces, these are exactly the maps that preserve distances), | |
and prove their basic properties. We also introduce isometric bijections. | |
Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the | |
theory for `pseudo_metric_space` and we specialize to `metric_space` when needed. | |
-/ | |
noncomputable theory | |
universes u v w | |
variables {α : Type u} {β : Type v} {γ : Type w} | |
open function set | |
open_locale topological_space ennreal | |
/-- An isometry (also known as isometric embedding) is a map preserving the edistance | |
between pseudoemetric spaces, or equivalently the distance between pseudometric space. -/ | |
def isometry [pseudo_emetric_space α] [pseudo_emetric_space β] (f : α → β) : Prop := | |
∀x1 x2 : α, edist (f x1) (f x2) = edist x1 x2 | |
/-- On pseudometric spaces, a map is an isometry if and only if it preserves nonnegative | |
distances. -/ | |
lemma isometry_iff_nndist_eq [pseudo_metric_space α] [pseudo_metric_space β] {f : α → β} : | |
isometry f ↔ (∀x y, nndist (f x) (f y) = nndist x y) := | |
by simp only [isometry, edist_nndist, ennreal.coe_eq_coe] | |
/-- On pseudometric spaces, a map is an isometry if and only if it preserves distances. -/ | |
lemma isometry_iff_dist_eq [pseudo_metric_space α] [pseudo_metric_space β] {f : α → β} : | |
isometry f ↔ (∀x y, dist (f x) (f y) = dist x y) := | |
by simp only [isometry_iff_nndist_eq, ← coe_nndist, nnreal.coe_eq] | |
/-- An isometry preserves distances. -/ | |
alias isometry_iff_dist_eq ↔ isometry.dist_eq _ | |
/-- A map that preserves distances is an isometry -/ | |
alias isometry_iff_dist_eq ↔ _ isometry.of_dist_eq | |
/-- An isometry preserves non-negative distances. -/ | |
alias isometry_iff_nndist_eq ↔ isometry.nndist_eq _ | |
/-- A map that preserves non-negative distances is an isometry. -/ | |
alias isometry_iff_nndist_eq ↔ _ isometry.of_nndist_eq | |
namespace isometry | |
section pseudo_emetric_isometry | |
variables [pseudo_emetric_space α] [pseudo_emetric_space β] [pseudo_emetric_space γ] | |
variables {f : α → β} {x y z : α} {s : set α} | |
/-- An isometry preserves edistances. -/ | |
theorem edist_eq (hf : isometry f) (x y : α) : edist (f x) (f y) = edist x y := hf x y | |
lemma lipschitz (h : isometry f) : lipschitz_with 1 f := | |
lipschitz_with.of_edist_le $ λ x y, (h x y).le | |
lemma antilipschitz (h : isometry f) : antilipschitz_with 1 f := | |
λ x y, by simp only [h x y, ennreal.coe_one, one_mul, le_refl] | |
/-- Any map on a subsingleton is an isometry -/ | |
@[nontriviality] theorem _root_.isometry_subsingleton [subsingleton α] : isometry f := | |
λx y, by rw subsingleton.elim x y; simp | |
/-- The identity is an isometry -/ | |
lemma _root_.isometry_id : isometry (id : α → α) := λ x y, rfl | |
/-- The composition of isometries is an isometry -/ | |
theorem comp {g : β → γ} {f : α → β} (hg : isometry g) (hf : isometry f) : isometry (g ∘ f) := | |
λ x y, (hg _ _).trans (hf _ _) | |
/-- An isometry from a metric space is a uniform continuous map -/ | |
protected theorem uniform_continuous (hf : isometry f) : uniform_continuous f := | |
hf.lipschitz.uniform_continuous | |
/-- An isometry from a metric space is a uniform inducing map -/ | |
protected theorem uniform_inducing (hf : isometry f) : uniform_inducing f := | |
hf.antilipschitz.uniform_inducing hf.uniform_continuous | |
lemma tendsto_nhds_iff {ι : Type*} {f : α → β} {g : ι → α} {a : filter ι} {b : α} | |
(hf : isometry f) : | |
filter.tendsto g a (𝓝 b) ↔ filter.tendsto (f ∘ g) a (𝓝 (f b)) := | |
hf.uniform_inducing.inducing.tendsto_nhds_iff | |
/-- An isometry is continuous. -/ | |
protected lemma continuous (hf : isometry f) : continuous f := hf.lipschitz.continuous | |
/-- The right inverse of an isometry is an isometry. -/ | |
lemma right_inv {f : α → β} {g : β → α} (h : isometry f) (hg : right_inverse g f) : | |
isometry g := | |
λ x y, by rw [← h, hg _, hg _] | |
lemma preimage_emetric_closed_ball (h : isometry f) (x : α) (r : ℝ≥0∞) : | |
f ⁻¹' (emetric.closed_ball (f x) r) = emetric.closed_ball x r := | |
by { ext y, simp [h.edist_eq] } | |
lemma preimage_emetric_ball (h : isometry f) (x : α) (r : ℝ≥0∞) : | |
f ⁻¹' (emetric.ball (f x) r) = emetric.ball x r := | |
by { ext y, simp [h.edist_eq] } | |
/-- Isometries preserve the diameter in pseudoemetric spaces. -/ | |
lemma ediam_image (hf : isometry f) (s : set α) : emetric.diam (f '' s) = emetric.diam s := | |
eq_of_forall_ge_iff $ λ d, | |
by simp only [emetric.diam_le_iff, ball_image_iff, hf.edist_eq] | |
lemma ediam_range (hf : isometry f) : emetric.diam (range f) = emetric.diam (univ : set α) := | |
by { rw ← image_univ, exact hf.ediam_image univ } | |
lemma maps_to_emetric_ball (hf : isometry f) (x : α) (r : ℝ≥0∞) : | |
maps_to f (emetric.ball x r) (emetric.ball (f x) r) := | |
(hf.preimage_emetric_ball x r).ge | |
lemma maps_to_emetric_closed_ball (hf : isometry f) (x : α) (r : ℝ≥0∞) : | |
maps_to f (emetric.closed_ball x r) (emetric.closed_ball (f x) r) := | |
(hf.preimage_emetric_closed_ball x r).ge | |
/-- The injection from a subtype is an isometry -/ | |
lemma _root_.isometry_subtype_coe {s : set α} : isometry (coe : s → α) := | |
λx y, rfl | |
lemma comp_continuous_on_iff {γ} [topological_space γ] (hf : isometry f) {g : γ → α} {s : set γ} : | |
continuous_on (f ∘ g) s ↔ continuous_on g s := | |
hf.uniform_inducing.inducing.continuous_on_iff.symm | |
lemma comp_continuous_iff {γ} [topological_space γ] (hf : isometry f) {g : γ → α} : | |
continuous (f ∘ g) ↔ continuous g := | |
hf.uniform_inducing.inducing.continuous_iff.symm | |
end pseudo_emetric_isometry --section | |
section emetric_isometry | |
variables [emetric_space α] [pseudo_emetric_space β] {f : α → β} | |
/-- An isometry from an emetric space is injective -/ | |
protected lemma injective (h : isometry f) : injective f := h.antilipschitz.injective | |
/-- An isometry from an emetric space is a uniform embedding -/ | |
protected theorem uniform_embedding (hf : isometry f) : uniform_embedding f := | |
hf.antilipschitz.uniform_embedding hf.lipschitz.uniform_continuous | |
/-- An isometry from an emetric space is an embedding -/ | |
protected theorem embedding (hf : isometry f) : embedding f := | |
hf.uniform_embedding.embedding | |
/-- An isometry from a complete emetric space is a closed embedding -/ | |
theorem closed_embedding [complete_space α] [emetric_space γ] | |
{f : α → γ} (hf : isometry f) : closed_embedding f := | |
hf.antilipschitz.closed_embedding hf.lipschitz.uniform_continuous | |
end emetric_isometry --section | |
section pseudo_metric_isometry | |
variables [pseudo_metric_space α] [pseudo_metric_space β] {f : α → β} | |
/-- An isometry preserves the diameter in pseudometric spaces. -/ | |
lemma diam_image (hf : isometry f) (s : set α) : metric.diam (f '' s) = metric.diam s := | |
by rw [metric.diam, metric.diam, hf.ediam_image] | |
lemma diam_range (hf : isometry f) : metric.diam (range f) = metric.diam (univ : set α) := | |
by { rw ← image_univ, exact hf.diam_image univ } | |
lemma preimage_set_of_dist (hf : isometry f) (x : α) (p : ℝ → Prop) : | |
f ⁻¹' {y | p (dist y (f x))} = {y | p (dist y x)} := | |
by { ext y, simp [hf.dist_eq] } | |
lemma preimage_closed_ball (hf : isometry f) (x : α) (r : ℝ) : | |
f ⁻¹' (metric.closed_ball (f x) r) = metric.closed_ball x r := | |
hf.preimage_set_of_dist x (≤ r) | |
lemma preimage_ball (hf : isometry f) (x : α) (r : ℝ) : | |
f ⁻¹' (metric.ball (f x) r) = metric.ball x r := | |
hf.preimage_set_of_dist x (< r) | |
lemma preimage_sphere (hf : isometry f) (x : α) (r : ℝ) : | |
f ⁻¹' (metric.sphere (f x) r) = metric.sphere x r := | |
hf.preimage_set_of_dist x (= r) | |
lemma maps_to_ball (hf : isometry f) (x : α) (r : ℝ) : | |
maps_to f (metric.ball x r) (metric.ball (f x) r) := | |
(hf.preimage_ball x r).ge | |
lemma maps_to_sphere (hf : isometry f) (x : α) (r : ℝ) : | |
maps_to f (metric.sphere x r) (metric.sphere (f x) r) := | |
(hf.preimage_sphere x r).ge | |
lemma maps_to_closed_ball (hf : isometry f) (x : α) (r : ℝ) : | |
maps_to f (metric.closed_ball x r) (metric.closed_ball (f x) r) := | |
(hf.preimage_closed_ball x r).ge | |
end pseudo_metric_isometry -- section | |
end isometry -- namespace | |
/-- A uniform embedding from a uniform space to a metric space is an isometry with respect to the | |
induced metric space structure on the source space. -/ | |
lemma uniform_embedding.to_isometry {α β} [uniform_space α] [metric_space β] {f : α → β} | |
(h : uniform_embedding f) : | |
@isometry α β | |
(@pseudo_metric_space.to_pseudo_emetric_space α | |
(@metric_space.to_pseudo_metric_space α (h.comap_metric_space f))) | |
(by apply_instance) f := | |
begin | |
apply isometry.of_dist_eq, | |
assume x y, | |
refl | |
end | |
/-- An embedding from a topological space to a metric space is an isometry with respect to the | |
induced metric space structure on the source space. -/ | |
lemma embedding.to_isometry {α β} [topological_space α] [metric_space β] {f : α → β} | |
(h : embedding f) : | |
@isometry α β | |
(@pseudo_metric_space.to_pseudo_emetric_space α | |
(@metric_space.to_pseudo_metric_space α (h.comap_metric_space f))) | |
(by apply_instance) f := | |
begin | |
apply isometry.of_dist_eq, | |
assume x y, | |
refl | |
end | |
/-- `α` and `β` are isometric if there is an isometric bijection between them. -/ | |
@[nolint has_nonempty_instance] -- such a bijection need not exist | |
structure isometric (α : Type*) (β : Type*) [pseudo_emetric_space α] [pseudo_emetric_space β] | |
extends α ≃ β := | |
(isometry_to_fun : isometry to_fun) | |
infix ` ≃ᵢ `:25 := isometric | |
namespace isometric | |
section pseudo_emetric_space | |
variables [pseudo_emetric_space α] [pseudo_emetric_space β] [pseudo_emetric_space γ] | |
instance : has_coe_to_fun (α ≃ᵢ β) (λ _, α → β) := ⟨λe, e.to_equiv⟩ | |
lemma coe_eq_to_equiv (h : α ≃ᵢ β) (a : α) : h a = h.to_equiv a := rfl | |
@[simp] lemma coe_to_equiv (h : α ≃ᵢ β) : ⇑h.to_equiv = h := rfl | |
protected lemma isometry (h : α ≃ᵢ β) : isometry h := h.isometry_to_fun | |
protected lemma bijective (h : α ≃ᵢ β) : bijective h := h.to_equiv.bijective | |
protected lemma injective (h : α ≃ᵢ β) : injective h := h.to_equiv.injective | |
protected lemma surjective (h : α ≃ᵢ β) : surjective h := h.to_equiv.surjective | |
protected lemma edist_eq (h : α ≃ᵢ β) (x y : α) : edist (h x) (h y) = edist x y := | |
h.isometry.edist_eq x y | |
protected lemma dist_eq {α β : Type*} [pseudo_metric_space α] [pseudo_metric_space β] (h : α ≃ᵢ β) | |
(x y : α) : dist (h x) (h y) = dist x y := | |
h.isometry.dist_eq x y | |
protected lemma nndist_eq {α β : Type*} [pseudo_metric_space α] [pseudo_metric_space β] (h : α ≃ᵢ β) | |
(x y : α) : nndist (h x) (h y) = nndist x y := | |
h.isometry.nndist_eq x y | |
protected lemma continuous (h : α ≃ᵢ β) : continuous h := h.isometry.continuous | |
@[simp] lemma ediam_image (h : α ≃ᵢ β) (s : set α) : emetric.diam (h '' s) = emetric.diam s := | |
h.isometry.ediam_image s | |
lemma to_equiv_inj : ∀ ⦃h₁ h₂ : α ≃ᵢ β⦄, (h₁.to_equiv = h₂.to_equiv) → h₁ = h₂ | |
| ⟨e₁, h₁⟩ ⟨e₂, h₂⟩ H := by { dsimp at H, subst e₁ } | |
@[ext] lemma ext ⦃h₁ h₂ : α ≃ᵢ β⦄ (H : ∀ x, h₁ x = h₂ x) : h₁ = h₂ := | |
to_equiv_inj $ equiv.ext H | |
/-- Alternative constructor for isometric bijections, | |
taking as input an isometry, and a right inverse. -/ | |
def mk' {α : Type u} [emetric_space α] (f : α → β) (g : β → α) (hfg : ∀ x, f (g x) = x) | |
(hf : isometry f) : α ≃ᵢ β := | |
{ to_fun := f, | |
inv_fun := g, | |
left_inv := λ x, hf.injective $ hfg _, | |
right_inv := hfg, | |
isometry_to_fun := hf } | |
/-- The identity isometry of a space. -/ | |
protected def refl (α : Type*) [pseudo_emetric_space α] : α ≃ᵢ α := | |
{ isometry_to_fun := isometry_id, .. equiv.refl α } | |
/-- The composition of two isometric isomorphisms, as an isometric isomorphism. -/ | |
protected def trans (h₁ : α ≃ᵢ β) (h₂ : β ≃ᵢ γ) : α ≃ᵢ γ := | |
{ isometry_to_fun := h₂.isometry_to_fun.comp h₁.isometry_to_fun, | |
.. equiv.trans h₁.to_equiv h₂.to_equiv } | |
@[simp] lemma trans_apply (h₁ : α ≃ᵢ β) (h₂ : β ≃ᵢ γ) (x : α) : h₁.trans h₂ x = h₂ (h₁ x) := rfl | |
/-- The inverse of an isometric isomorphism, as an isometric isomorphism. -/ | |
protected def symm (h : α ≃ᵢ β) : β ≃ᵢ α := | |
{ isometry_to_fun := h.isometry.right_inv h.right_inv, | |
to_equiv := h.to_equiv.symm } | |
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case, | |
because it is a composition of multiple projections. -/ | |
def simps.apply (h : α ≃ᵢ β) : α → β := h | |
/-- See Note [custom simps projection] -/ | |
def simps.symm_apply (h : α ≃ᵢ β) : β → α := h.symm | |
initialize_simps_projections isometric | |
(to_equiv_to_fun → apply, to_equiv_inv_fun → symm_apply) | |
@[simp] lemma symm_symm (h : α ≃ᵢ β) : h.symm.symm = h := to_equiv_inj h.to_equiv.symm_symm | |
@[simp] lemma apply_symm_apply (h : α ≃ᵢ β) (y : β) : h (h.symm y) = y := | |
h.to_equiv.apply_symm_apply y | |
@[simp] lemma symm_apply_apply (h : α ≃ᵢ β) (x : α) : h.symm (h x) = x := | |
h.to_equiv.symm_apply_apply x | |
lemma symm_apply_eq (h : α ≃ᵢ β) {x : α} {y : β} : | |
h.symm y = x ↔ y = h x := | |
h.to_equiv.symm_apply_eq | |
lemma eq_symm_apply (h : α ≃ᵢ β) {x : α} {y : β} : | |
x = h.symm y ↔ h x = y := | |
h.to_equiv.eq_symm_apply | |
lemma symm_comp_self (h : α ≃ᵢ β) : ⇑h.symm ∘ ⇑h = id := | |
funext $ assume a, h.to_equiv.left_inv a | |
lemma self_comp_symm (h : α ≃ᵢ β) : ⇑h ∘ ⇑h.symm = id := | |
funext $ assume a, h.to_equiv.right_inv a | |
@[simp] lemma range_eq_univ (h : α ≃ᵢ β) : range h = univ := | |
h.to_equiv.range_eq_univ | |
lemma image_symm (h : α ≃ᵢ β) : image h.symm = preimage h := | |
image_eq_preimage_of_inverse h.symm.to_equiv.left_inv h.symm.to_equiv.right_inv | |
lemma preimage_symm (h : α ≃ᵢ β) : preimage h.symm = image h := | |
(image_eq_preimage_of_inverse h.to_equiv.left_inv h.to_equiv.right_inv).symm | |
@[simp] lemma symm_trans_apply (h₁ : α ≃ᵢ β) (h₂ : β ≃ᵢ γ) (x : γ) : | |
(h₁.trans h₂).symm x = h₁.symm (h₂.symm x) := rfl | |
lemma ediam_univ (h : α ≃ᵢ β) : emetric.diam (univ : set α) = emetric.diam (univ : set β) := | |
by rw [← h.range_eq_univ, h.isometry.ediam_range] | |
@[simp] lemma ediam_preimage (h : α ≃ᵢ β) (s : set β) : emetric.diam (h ⁻¹' s) = emetric.diam s := | |
by rw [← image_symm, ediam_image] | |
@[simp] lemma preimage_emetric_ball (h : α ≃ᵢ β) (x : β) (r : ℝ≥0∞) : | |
h ⁻¹' (emetric.ball x r) = emetric.ball (h.symm x) r := | |
by rw [← h.isometry.preimage_emetric_ball (h.symm x) r, h.apply_symm_apply] | |
@[simp] lemma preimage_emetric_closed_ball (h : α ≃ᵢ β) (x : β) (r : ℝ≥0∞) : | |
h ⁻¹' (emetric.closed_ball x r) = emetric.closed_ball (h.symm x) r := | |
by rw [← h.isometry.preimage_emetric_closed_ball (h.symm x) r, h.apply_symm_apply] | |
@[simp] lemma image_emetric_ball (h : α ≃ᵢ β) (x : α) (r : ℝ≥0∞) : | |
h '' (emetric.ball x r) = emetric.ball (h x) r := | |
by rw [← h.preimage_symm, h.symm.preimage_emetric_ball, symm_symm] | |
@[simp] lemma image_emetric_closed_ball (h : α ≃ᵢ β) (x : α) (r : ℝ≥0∞) : | |
h '' (emetric.closed_ball x r) = emetric.closed_ball (h x) r := | |
by rw [← h.preimage_symm, h.symm.preimage_emetric_closed_ball, symm_symm] | |
/-- The (bundled) homeomorphism associated to an isometric isomorphism. -/ | |
@[simps to_equiv] protected def to_homeomorph (h : α ≃ᵢ β) : α ≃ₜ β := | |
{ continuous_to_fun := h.continuous, | |
continuous_inv_fun := h.symm.continuous, | |
to_equiv := h.to_equiv } | |
@[simp] lemma coe_to_homeomorph (h : α ≃ᵢ β) : ⇑(h.to_homeomorph) = h := rfl | |
@[simp] lemma coe_to_homeomorph_symm (h : α ≃ᵢ β) : ⇑(h.to_homeomorph.symm) = h.symm := rfl | |
@[simp] lemma comp_continuous_on_iff {γ} [topological_space γ] (h : α ≃ᵢ β) | |
{f : γ → α} {s : set γ} : | |
continuous_on (h ∘ f) s ↔ continuous_on f s := | |
h.to_homeomorph.comp_continuous_on_iff _ _ | |
@[simp] lemma comp_continuous_iff {γ} [topological_space γ] (h : α ≃ᵢ β) {f : γ → α} : | |
continuous (h ∘ f) ↔ continuous f := | |
h.to_homeomorph.comp_continuous_iff | |
@[simp] lemma comp_continuous_iff' {γ} [topological_space γ] (h : α ≃ᵢ β) {f : β → γ} : | |
continuous (f ∘ h) ↔ continuous f := | |
h.to_homeomorph.comp_continuous_iff' | |
/-- The group of isometries. -/ | |
instance : group (α ≃ᵢ α) := | |
{ one := isometric.refl _, | |
mul := λ e₁ e₂, e₂.trans e₁, | |
inv := isometric.symm, | |
mul_assoc := λ e₁ e₂ e₃, rfl, | |
one_mul := λ e, ext $ λ _, rfl, | |
mul_one := λ e, ext $ λ _, rfl, | |
mul_left_inv := λ e, ext e.symm_apply_apply } | |
@[simp] lemma coe_one : ⇑(1 : α ≃ᵢ α) = id := rfl | |
@[simp] lemma coe_mul (e₁ e₂ : α ≃ᵢ α) : ⇑(e₁ * e₂) = e₁ ∘ e₂ := rfl | |
lemma mul_apply (e₁ e₂ : α ≃ᵢ α) (x : α) : (e₁ * e₂) x = e₁ (e₂ x) := rfl | |
@[simp] lemma inv_apply_self (e : α ≃ᵢ α) (x: α) : e⁻¹ (e x) = x := e.symm_apply_apply x | |
@[simp] lemma apply_inv_self (e : α ≃ᵢ α) (x: α) : e (e⁻¹ x) = x := e.apply_symm_apply x | |
protected lemma complete_space [complete_space β] (e : α ≃ᵢ β) : complete_space α := | |
complete_space_of_is_complete_univ $ is_complete_of_complete_image e.isometry.uniform_inducing $ | |
by rwa [set.image_univ, isometric.range_eq_univ, ← complete_space_iff_is_complete_univ] | |
lemma complete_space_iff (e : α ≃ᵢ β) : complete_space α ↔ complete_space β := | |
by { split; introI H, exacts [e.symm.complete_space, e.complete_space] } | |
end pseudo_emetric_space | |
section pseudo_metric_space | |
variables [pseudo_metric_space α] [pseudo_metric_space β] (h : α ≃ᵢ β) | |
@[simp] lemma diam_image (s : set α) : metric.diam (h '' s) = metric.diam s := | |
h.isometry.diam_image s | |
@[simp] lemma diam_preimage (s : set β) : metric.diam (h ⁻¹' s) = metric.diam s := | |
by rw [← image_symm, diam_image] | |
lemma diam_univ : metric.diam (univ : set α) = metric.diam (univ : set β) := | |
congr_arg ennreal.to_real h.ediam_univ | |
@[simp] lemma preimage_ball (h : α ≃ᵢ β) (x : β) (r : ℝ) : | |
h ⁻¹' (metric.ball x r) = metric.ball (h.symm x) r := | |
by rw [← h.isometry.preimage_ball (h.symm x) r, h.apply_symm_apply] | |
@[simp] lemma preimage_sphere (h : α ≃ᵢ β) (x : β) (r : ℝ) : | |
h ⁻¹' (metric.sphere x r) = metric.sphere (h.symm x) r := | |
by rw [← h.isometry.preimage_sphere (h.symm x) r, h.apply_symm_apply] | |
@[simp] lemma preimage_closed_ball (h : α ≃ᵢ β) (x : β) (r : ℝ) : | |
h ⁻¹' (metric.closed_ball x r) = metric.closed_ball (h.symm x) r := | |
by rw [← h.isometry.preimage_closed_ball (h.symm x) r, h.apply_symm_apply] | |
@[simp] lemma image_ball (h : α ≃ᵢ β) (x : α) (r : ℝ) : | |
h '' (metric.ball x r) = metric.ball (h x) r := | |
by rw [← h.preimage_symm, h.symm.preimage_ball, symm_symm] | |
@[simp] lemma image_sphere (h : α ≃ᵢ β) (x : α) (r : ℝ) : | |
h '' (metric.sphere x r) = metric.sphere (h x) r := | |
by rw [← h.preimage_symm, h.symm.preimage_sphere, symm_symm] | |
@[simp] lemma image_closed_ball (h : α ≃ᵢ β) (x : α) (r : ℝ) : | |
h '' (metric.closed_ball x r) = metric.closed_ball (h x) r := | |
by rw [← h.preimage_symm, h.symm.preimage_closed_ball, symm_symm] | |
end pseudo_metric_space | |
end isometric | |
/-- An isometry induces an isometric isomorphism between the source space and the | |
range of the isometry. -/ | |
@[simps to_equiv apply { simp_rhs := tt }] | |
def isometry.isometric_on_range [emetric_space α] [pseudo_emetric_space β] {f : α → β} | |
(h : isometry f) : α ≃ᵢ range f := | |
{ isometry_to_fun := λx y, by simpa [subtype.edist_eq] using h x y, | |
to_equiv := equiv.of_injective f h.injective } | |