Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
I think it's all done!
fc5e983
raw
history blame
6.13 kB
/-
Copyright (c) 2022 Yury G. Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury G. Kudryashov
-/
import topology.bornology.basic
/-!
# Bornology structure on products and subtypes
In this file we define `bornology` and `bounded_space` instances on `α × β`, `Π i, π i`, and
`{x // p x}`. We also prove basic lemmas about `bornology.cobounded` and `bornology.is_bounded`
on these types.
-/
open set filter bornology function
open_locale filter
variables {α β ι : Type*} {π : ι → Type*} [fintype ι] [bornology α] [bornology β]
[Π i, bornology (π i)]
instance : bornology (α × β) :=
{ cobounded := (cobounded α).coprod (cobounded β),
le_cofinite := @coprod_cofinite α β ▸ coprod_monobornology α›.le_cofinite
‹bornology β›.le_cofinite }
instance : bornology (Π i, π i) :=
{ cobounded := filter.Coprod (λ i, cobounded (π i)),
le_cofinite := @Coprod_cofinite ι π _(filter.Coprod_mono $ λ i, bornology.le_cofinite _) }
/-- Inverse image of a bornology. -/
@[reducible] def bornology.induced {α β : Type*} [bornology β] (f : α → β) : bornology α :=
{ cobounded := comap f (cobounded β),
le_cofinite := (comap_mono (bornology.le_cofinite β)).trans (comap_cofinite_le _) }
instance {p : α → Prop} : bornology (subtype p) := bornology.induced (coe : subtype p → α)
namespace bornology
/-!
### Bounded sets in `α × β`
-/
lemma cobounded_prod : cobounded (α × β) = (cobounded α).coprod (cobounded β) := rfl
lemma is_bounded_image_fst_and_snd {s : set (α × β)} :
is_bounded (prod.fst '' s)is_bounded (prod.snd '' s)is_bounded s :=
compl_mem_coprod.symm
variables {s : set α} {t : set β} {S : Π i, set (π i)}
lemma is_bounded.fst_of_prod (h : is_bounded (s ×ˢ t)) (ht : t.nonempty) :
is_bounded s :=
fst_image_prod s ht(is_bounded_image_fst_and_snd.2 h).1
lemma is_bounded.snd_of_prod (h : is_bounded (s ×ˢ t)) (hs : s.nonempty) :
is_bounded t :=
snd_image_prod hs t(is_bounded_image_fst_and_snd.2 h).2
lemma is_bounded.prod (hs : is_bounded s) (ht : is_bounded t) : is_bounded (s ×ˢ t) :=
is_bounded_image_fst_and_snd.1
⟨hs.subset $ fst_image_prod_subset _ _, ht.subset $ snd_image_prod_subset _ _
lemma is_bounded_prod_of_nonempty (hne : set.nonempty (s ×ˢ t)) :
is_bounded (s ×ˢ t)is_bounded sis_bounded t :=
⟨λ h, ⟨h.fst_of_prod hne.snd, h.snd_of_prod hne.fst, λ h, h.1.prod h.2
lemma is_bounded_prod : is_bounded (s ×ˢ t)s = ∅ ∨ t = ∅ ∨ is_bounded sis_bounded t :=
begin
rcases s.eq_empty_or_nonempty with rfl|hs, { simp },
rcases t.eq_empty_or_nonempty with rfl|ht, { simp },
simp only [hs.ne_empty, ht.ne_empty, is_bounded_prod_of_nonempty (hs.prod ht), false_or]
end
lemma is_bounded_prod_self : is_bounded (s ×ˢ s)is_bounded s :=
begin
rcases s.eq_empty_or_nonempty with rfl|hs, { simp },
exact (is_bounded_prod_of_nonempty (hs.prod hs)).trans (and_self _)
end
/-!
### Bounded sets in `Π i, π i`
-/
lemma cobounded_pi : cobounded (Π i, π i) = filter.Coprod (λ i, cobounded (π i)) := rfl
lemma forall_is_bounded_image_eval_iff {s : set (Π i, π i)} :
(∀ i, is_bounded (eval i '' s))is_bounded s :=
compl_mem_Coprod.symm
lemma is_bounded.pi (h :i, is_bounded (S i)) : is_bounded (pi univ S) :=
forall_is_bounded_image_eval_iff.1 $ λ i, (h i).subset eval_image_univ_pi_subset
lemma is_bounded_pi_of_nonempty (hne : (pi univ S).nonempty) :
is_bounded (pi univ S) ↔ ∀ i, is_bounded (S i) :=
⟨λ H i, @eval_image_univ_pi _ _ _ i hneforall_is_bounded_image_eval_iff.2 H i, is_bounded.pi
lemma is_bounded_pi : is_bounded (pi univ S)(i, S i =) ∨ ∀ i, is_bounded (S i) :=
begin
by_cases hne :i, S i =,
{ simp [hne, univ_pi_eq_empty_iff.2 hne] },
{ simp only [hne, false_or],
simp only [not_exists,ne.def, ne_empty_iff_nonempty,univ_pi_nonempty_iff] at hne,
exact is_bounded_pi_of_nonempty hne }
end
/-!
### Bounded sets in `{x // p x}`
-/
lemma is_bounded_induced {α β : Type*} [bornology β] {f : α → β} {s : set α} :
@is_bounded α (bornology.induced f) sis_bounded (f '' s) :=
compl_mem_comap
lemma is_bounded_image_subtype_coe {p : α → Prop} {s : set {x // p x}} :
is_bounded (coe '' s : set α)is_bounded s :=
is_bounded_induced.symm
end bornology
/-!
### Bounded spaces
-/
open bornology
instance [bounded_space α] [bounded_space β] : bounded_space (α × β) :=
by simp [cobounded_eq_bot_iff, cobounded_prod]
instance [i, bounded_space (π i)] : bounded_space (Π i, π i) :=
by simp [cobounded_eq_bot_iff, cobounded_pi]
lemma bounded_space_induced_iff {α β : Type*} [bornology β] {f : α → β} :
@bounded_space α (bornology.induced f)is_bounded (range f) :=
by rw [is_bounded_univ, is_bounded_induced, image_univ]
lemma bounded_space_subtype_iff {p : α → Prop} : bounded_space (subtype p)is_bounded {x | p x} :=
by rw [bounded_space_induced_iff, subtype.range_coe_subtype]
lemma bounded_space_coe_set_iff {s : set α} : bounded_space sis_bounded s :=
bounded_space_subtype_iff
alias bounded_space_subtype_iff_ bornology.is_bounded.bounded_space_subtype
alias bounded_space_coe_set_iff_ bornology.is_bounded.bounded_space_coe
instance [bounded_space α] {p : α → Prop} : bounded_space (subtype p) :=
(is_bounded.all {x | p x}).bounded_space_subtype
/-!
### `additive`, `multiplicative`
The bornology on those type synonyms is inherited without change.
-/
instance : bornology (additive α) :=bornology α›
instance : bornology (multiplicative α) :=bornology α›
instance [bounded_space α] : bounded_space (additive α) :=bounded_space α›
instance [bounded_space α] : bounded_space (multiplicative α) :=bounded_space α›
/-!
### Order dual
The bornology on this type synonym is inherited without change.
-/
instance : bornology αᵒᵈ :=bornology α›
instance [bounded_space α] : bounded_space αᵒᵈ :=bounded_space α›