Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Yury G. Kudryashov. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Yury G. Kudryashov | |
-/ | |
import topology.bornology.basic | |
/-! | |
# Bornology structure on products and subtypes | |
In this file we define `bornology` and `bounded_space` instances on `α × β`, `Π i, π i`, and | |
`{x // p x}`. We also prove basic lemmas about `bornology.cobounded` and `bornology.is_bounded` | |
on these types. | |
-/ | |
open set filter bornology function | |
open_locale filter | |
variables {α β ι : Type*} {π : ι → Type*} [fintype ι] [bornology α] [bornology β] | |
[Π i, bornology (π i)] | |
instance : bornology (α × β) := | |
{ cobounded := (cobounded α).coprod (cobounded β), | |
le_cofinite := @coprod_cofinite α β ▸ coprod_mono ‹bornology α›.le_cofinite | |
‹bornology β›.le_cofinite } | |
instance : bornology (Π i, π i) := | |
{ cobounded := filter.Coprod (λ i, cobounded (π i)), | |
le_cofinite := @Coprod_cofinite ι π _ ▸ (filter.Coprod_mono $ λ i, bornology.le_cofinite _) } | |
/-- Inverse image of a bornology. -/ | |
@[reducible] def bornology.induced {α β : Type*} [bornology β] (f : α → β) : bornology α := | |
{ cobounded := comap f (cobounded β), | |
le_cofinite := (comap_mono (bornology.le_cofinite β)).trans (comap_cofinite_le _) } | |
instance {p : α → Prop} : bornology (subtype p) := bornology.induced (coe : subtype p → α) | |
namespace bornology | |
/-! | |
### Bounded sets in `α × β` | |
-/ | |
lemma cobounded_prod : cobounded (α × β) = (cobounded α).coprod (cobounded β) := rfl | |
lemma is_bounded_image_fst_and_snd {s : set (α × β)} : | |
is_bounded (prod.fst '' s) ∧ is_bounded (prod.snd '' s) ↔ is_bounded s := | |
compl_mem_coprod.symm | |
variables {s : set α} {t : set β} {S : Π i, set (π i)} | |
lemma is_bounded.fst_of_prod (h : is_bounded (s ×ˢ t)) (ht : t.nonempty) : | |
is_bounded s := | |
fst_image_prod s ht ▸ (is_bounded_image_fst_and_snd.2 h).1 | |
lemma is_bounded.snd_of_prod (h : is_bounded (s ×ˢ t)) (hs : s.nonempty) : | |
is_bounded t := | |
snd_image_prod hs t ▸ (is_bounded_image_fst_and_snd.2 h).2 | |
lemma is_bounded.prod (hs : is_bounded s) (ht : is_bounded t) : is_bounded (s ×ˢ t) := | |
is_bounded_image_fst_and_snd.1 | |
⟨hs.subset $ fst_image_prod_subset _ _, ht.subset $ snd_image_prod_subset _ _⟩ | |
lemma is_bounded_prod_of_nonempty (hne : set.nonempty (s ×ˢ t)) : | |
is_bounded (s ×ˢ t) ↔ is_bounded s ∧ is_bounded t := | |
⟨λ h, ⟨h.fst_of_prod hne.snd, h.snd_of_prod hne.fst⟩, λ h, h.1.prod h.2⟩ | |
lemma is_bounded_prod : is_bounded (s ×ˢ t) ↔ s = ∅ ∨ t = ∅ ∨ is_bounded s ∧ is_bounded t := | |
begin | |
rcases s.eq_empty_or_nonempty with rfl|hs, { simp }, | |
rcases t.eq_empty_or_nonempty with rfl|ht, { simp }, | |
simp only [hs.ne_empty, ht.ne_empty, is_bounded_prod_of_nonempty (hs.prod ht), false_or] | |
end | |
lemma is_bounded_prod_self : is_bounded (s ×ˢ s) ↔ is_bounded s := | |
begin | |
rcases s.eq_empty_or_nonempty with rfl|hs, { simp }, | |
exact (is_bounded_prod_of_nonempty (hs.prod hs)).trans (and_self _) | |
end | |
/-! | |
### Bounded sets in `Π i, π i` | |
-/ | |
lemma cobounded_pi : cobounded (Π i, π i) = filter.Coprod (λ i, cobounded (π i)) := rfl | |
lemma forall_is_bounded_image_eval_iff {s : set (Π i, π i)} : | |
(∀ i, is_bounded (eval i '' s)) ↔ is_bounded s := | |
compl_mem_Coprod.symm | |
lemma is_bounded.pi (h : ∀ i, is_bounded (S i)) : is_bounded (pi univ S) := | |
forall_is_bounded_image_eval_iff.1 $ λ i, (h i).subset eval_image_univ_pi_subset | |
lemma is_bounded_pi_of_nonempty (hne : (pi univ S).nonempty) : | |
is_bounded (pi univ S) ↔ ∀ i, is_bounded (S i) := | |
⟨λ H i, @eval_image_univ_pi _ _ _ i hne ▸ forall_is_bounded_image_eval_iff.2 H i, is_bounded.pi⟩ | |
lemma is_bounded_pi : is_bounded (pi univ S) ↔ (∃ i, S i = ∅) ∨ ∀ i, is_bounded (S i) := | |
begin | |
by_cases hne : ∃ i, S i = ∅, | |
{ simp [hne, univ_pi_eq_empty_iff.2 hne] }, | |
{ simp only [hne, false_or], | |
simp only [not_exists, ← ne.def, ne_empty_iff_nonempty, ← univ_pi_nonempty_iff] at hne, | |
exact is_bounded_pi_of_nonempty hne } | |
end | |
/-! | |
### Bounded sets in `{x // p x}` | |
-/ | |
lemma is_bounded_induced {α β : Type*} [bornology β] {f : α → β} {s : set α} : | |
@is_bounded α (bornology.induced f) s ↔ is_bounded (f '' s) := | |
compl_mem_comap | |
lemma is_bounded_image_subtype_coe {p : α → Prop} {s : set {x // p x}} : | |
is_bounded (coe '' s : set α) ↔ is_bounded s := | |
is_bounded_induced.symm | |
end bornology | |
/-! | |
### Bounded spaces | |
-/ | |
open bornology | |
instance [bounded_space α] [bounded_space β] : bounded_space (α × β) := | |
by simp [← cobounded_eq_bot_iff, cobounded_prod] | |
instance [∀ i, bounded_space (π i)] : bounded_space (Π i, π i) := | |
by simp [← cobounded_eq_bot_iff, cobounded_pi] | |
lemma bounded_space_induced_iff {α β : Type*} [bornology β] {f : α → β} : | |
@bounded_space α (bornology.induced f) ↔ is_bounded (range f) := | |
by rw [← is_bounded_univ, is_bounded_induced, image_univ] | |
lemma bounded_space_subtype_iff {p : α → Prop} : bounded_space (subtype p) ↔ is_bounded {x | p x} := | |
by rw [bounded_space_induced_iff, subtype.range_coe_subtype] | |
lemma bounded_space_coe_set_iff {s : set α} : bounded_space s ↔ is_bounded s := | |
bounded_space_subtype_iff | |
alias bounded_space_subtype_iff ↔ _ bornology.is_bounded.bounded_space_subtype | |
alias bounded_space_coe_set_iff ↔ _ bornology.is_bounded.bounded_space_coe | |
instance [bounded_space α] {p : α → Prop} : bounded_space (subtype p) := | |
(is_bounded.all {x | p x}).bounded_space_subtype | |
/-! | |
### `additive`, `multiplicative` | |
The bornology on those type synonyms is inherited without change. | |
-/ | |
instance : bornology (additive α) := ‹bornology α› | |
instance : bornology (multiplicative α) := ‹bornology α› | |
instance [bounded_space α] : bounded_space (additive α) := ‹bounded_space α› | |
instance [bounded_space α] : bounded_space (multiplicative α) := ‹bounded_space α› | |
/-! | |
### Order dual | |
The bornology on this type synonym is inherited without change. | |
-/ | |
instance : bornology αᵒᵈ := ‹bornology α› | |
instance [bounded_space α] : bounded_space αᵒᵈ := ‹bounded_space α› | |