Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 Scott Morrison. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Scott Morrison | |
-/ | |
import set_theory.game.short | |
/-! | |
# Games described via "the state of the board". | |
We provide a simple mechanism for constructing combinatorial (pre-)games, by describing | |
"the state of the board", and providing an upper bound on the number of turns remaining. | |
## Implementation notes | |
We're very careful to produce a computable definition, so small games can be evaluated | |
using `dec_trivial`. To achieve this, I've had to rely solely on induction on natural numbers: | |
relying on general well-foundedness seems to be poisonous to computation? | |
See `set_theory/game/domineering` for an example using this construction. | |
-/ | |
universe u | |
namespace pgame | |
/-- | |
`pgame_state S` describes how to interpret `s : S` as a state of a combinatorial game. | |
Use `pgame.of_state s` or `game.of_state s` to construct the game. | |
`pgame_state.L : S → finset S` and `pgame_state.R : S → finset S` describe the states reachable | |
by a move by Left or Right. `pgame_state.turn_bound : S → ℕ` gives an upper bound on the number of | |
possible turns remaining from this state. | |
-/ | |
class state (S : Type u) := | |
(turn_bound : S → ℕ) | |
(L : S → finset S) | |
(R : S → finset S) | |
(left_bound : ∀ {s t : S} (m : t ∈ L s), turn_bound t < turn_bound s) | |
(right_bound : ∀ {s t : S} (m : t ∈ R s), turn_bound t < turn_bound s) | |
open state | |
variables {S : Type u} [state S] | |
lemma turn_bound_ne_zero_of_left_move {s t : S} (m : t ∈ L s) : turn_bound s ≠0 := | |
begin | |
intro h, | |
have t := state.left_bound m, | |
rw h at t, | |
exact nat.not_succ_le_zero _ t, | |
end | |
lemma turn_bound_ne_zero_of_right_move {s t : S} (m : t ∈ R s) : turn_bound s ≠0 := | |
begin | |
intro h, | |
have t := state.right_bound m, | |
rw h at t, | |
exact nat.not_succ_le_zero _ t, | |
end | |
lemma turn_bound_of_left {s t : S} (m : t ∈ L s) (n : ℕ) (h : turn_bound s ≤ n + 1) : | |
turn_bound t ≤ n := | |
nat.le_of_lt_succ (nat.lt_of_lt_of_le (left_bound m) h) | |
lemma turn_bound_of_right {s t : S} (m : t ∈ R s) (n : ℕ) (h : turn_bound s ≤ n + 1) : | |
turn_bound t ≤ n := | |
nat.le_of_lt_succ (nat.lt_of_lt_of_le (right_bound m) h) | |
/-- | |
Construct a `pgame` from a state and a (not necessarily optimal) bound on the number of | |
turns remaining. | |
-/ | |
def of_state_aux : Π(n : ℕ) (s : S) (h : turn_bound s ≤ n), pgame | |
| 0 s h := pgame.mk {t // t ∈ L s} {t // t ∈ R s} | |
(λ t, begin exfalso, exact turn_bound_ne_zero_of_left_move t.2 (nonpos_iff_eq_zero.mp h) end) | |
(λ t, begin exfalso, exact turn_bound_ne_zero_of_right_move t.2 (nonpos_iff_eq_zero.mp h) end) | |
| (n+1) s h := | |
pgame.mk {t // t ∈ L s} {t // t ∈ R s} | |
(λ t, of_state_aux n t (turn_bound_of_left t.2 n h)) | |
(λ t, of_state_aux n t (turn_bound_of_right t.2 n h)) | |
/-- Two different (valid) turn bounds give equivalent games. -/ | |
def of_state_aux_relabelling : Π(s : S) (n m : ℕ) (hn : turn_bound s ≤ n) (hm : turn_bound s ≤ m), | |
relabelling (of_state_aux n s hn) (of_state_aux m s hm) | |
| s 0 0 hn hm := | |
begin | |
dsimp [pgame.of_state_aux], | |
fsplit, refl, refl, | |
{ intro i, dsimp at i, exfalso, | |
exact turn_bound_ne_zero_of_left_move i.2 (nonpos_iff_eq_zero.mp hn) }, | |
{ intro j, dsimp at j, exfalso, | |
exact turn_bound_ne_zero_of_right_move j.2 (nonpos_iff_eq_zero.mp hm) } | |
end | |
| s 0 (m+1) hn hm := | |
begin | |
dsimp [pgame.of_state_aux], | |
fsplit, refl, refl, | |
{ intro i, dsimp at i, exfalso, | |
exact turn_bound_ne_zero_of_left_move i.2 (nonpos_iff_eq_zero.mp hn) }, | |
{ intro j, dsimp at j, exfalso, | |
exact turn_bound_ne_zero_of_right_move j.2 (nonpos_iff_eq_zero.mp hn) } | |
end | |
| s (n+1) 0 hn hm := | |
begin | |
dsimp [pgame.of_state_aux], | |
fsplit, refl, refl, | |
{ intro i, dsimp at i, exfalso, | |
exact turn_bound_ne_zero_of_left_move i.2 (nonpos_iff_eq_zero.mp hm) }, | |
{ intro j, dsimp at j, exfalso, | |
exact turn_bound_ne_zero_of_right_move j.2 (nonpos_iff_eq_zero.mp hm) } | |
end | |
| s (n+1) (m+1) hn hm := | |
begin | |
dsimp [pgame.of_state_aux], | |
fsplit, refl, refl, | |
{ intro i, | |
apply of_state_aux_relabelling, }, | |
{ intro j, | |
apply of_state_aux_relabelling, } | |
end | |
/-- Construct a combinatorial `pgame` from a state. -/ | |
def of_state (s : S) : pgame := of_state_aux (turn_bound s) s (refl _) | |
/-- The equivalence between `left_moves` for a `pgame` constructed using `of_state_aux _ s _`, and | |
`L s`. -/ | |
def left_moves_of_state_aux (n : ℕ) {s : S} (h : turn_bound s ≤ n) : | |
left_moves (of_state_aux n s h) ≃ {t // t ∈ L s} := | |
by induction n; refl | |
/-- The equivalence between `left_moves` for a `pgame` constructed using `of_state s`, and `L s`. -/ | |
def left_moves_of_state (s : S) : left_moves (of_state s) ≃ {t // t ∈ L s} := | |
left_moves_of_state_aux _ _ | |
/-- The equivalence between `right_moves` for a `pgame` constructed using `of_state_aux _ s _`, and | |
`R s`. -/ | |
def right_moves_of_state_aux (n : ℕ) {s : S} (h : turn_bound s ≤ n) : | |
right_moves (of_state_aux n s h) ≃ {t // t ∈ R s} := | |
by induction n; refl | |
/-- The equivalence between `right_moves` for a `pgame` constructed using `of_state s`, and | |
`R s`. -/ | |
def right_moves_of_state (s : S) : right_moves (of_state s) ≃ {t // t ∈ R s} := | |
right_moves_of_state_aux _ _ | |
/-- | |
The relabelling showing `move_left` applied to a game constructed using `of_state_aux` | |
has itself been constructed using `of_state_aux`. | |
-/ | |
def relabelling_move_left_aux (n : ℕ) {s : S} (h : turn_bound s ≤ n) | |
(t : left_moves (of_state_aux n s h)) : | |
relabelling | |
(move_left (of_state_aux n s h) t) | |
(of_state_aux (n-1) (((left_moves_of_state_aux n h) t) : S) | |
((turn_bound_of_left ((left_moves_of_state_aux n h) t).2 (n-1) | |
(nat.le_trans h le_tsub_add)))) := | |
begin | |
induction n, | |
{ have t' := (left_moves_of_state_aux 0 h) t, | |
exfalso, exact turn_bound_ne_zero_of_left_move t'.2 (nonpos_iff_eq_zero.mp h), }, | |
{ refl }, | |
end | |
/-- | |
The relabelling showing `move_left` applied to a game constructed using `of` | |
has itself been constructed using `of`. | |
-/ | |
def relabelling_move_left (s : S) (t : left_moves (of_state s)) : | |
relabelling | |
(move_left (of_state s) t) | |
(of_state (((left_moves_of_state s).to_fun t) : S)) := | |
begin | |
transitivity, | |
apply relabelling_move_left_aux, | |
apply of_state_aux_relabelling, | |
end | |
/-- | |
The relabelling showing `move_right` applied to a game constructed using `of_state_aux` | |
has itself been constructed using `of_state_aux`. | |
-/ | |
def relabelling_move_right_aux (n : ℕ) {s : S} (h : turn_bound s ≤ n) | |
(t : right_moves (of_state_aux n s h)) : | |
relabelling | |
(move_right (of_state_aux n s h) t) | |
(of_state_aux (n-1) (((right_moves_of_state_aux n h) t) : S) | |
((turn_bound_of_right ((right_moves_of_state_aux n h) t).2 (n-1) | |
(nat.le_trans h le_tsub_add)))) := | |
begin | |
induction n, | |
{ have t' := (right_moves_of_state_aux 0 h) t, | |
exfalso, exact turn_bound_ne_zero_of_right_move t'.2 (nonpos_iff_eq_zero.mp h), }, | |
{ refl }, | |
end | |
/-- | |
The relabelling showing `move_right` applied to a game constructed using `of` | |
has itself been constructed using `of`. | |
-/ | |
def relabelling_move_right (s : S) (t : right_moves (of_state s)) : | |
relabelling | |
(move_right (of_state s) t) | |
(of_state (((right_moves_of_state s).to_fun t) : S)) := | |
begin | |
transitivity, | |
apply relabelling_move_right_aux, | |
apply of_state_aux_relabelling, | |
end | |
instance fintype_left_moves_of_state_aux (n : ℕ) (s : S) (h : turn_bound s ≤ n) : | |
fintype (left_moves (of_state_aux n s h)) := | |
begin | |
apply fintype.of_equiv _ (left_moves_of_state_aux _ _).symm, | |
apply_instance, | |
end | |
instance fintype_right_moves_of_state_aux (n : ℕ) (s : S) (h : turn_bound s ≤ n) : | |
fintype (right_moves (of_state_aux n s h)) := | |
begin | |
apply fintype.of_equiv _ (right_moves_of_state_aux _ _).symm, | |
apply_instance, | |
end | |
instance short_of_state_aux : Π(n : ℕ) {s : S} (h : turn_bound s ≤ n), short (of_state_aux n s h) | |
| 0 s h := | |
short.mk' | |
(λ i, begin | |
have i := (left_moves_of_state_aux _ _).to_fun i, | |
exfalso, | |
exact turn_bound_ne_zero_of_left_move i.2 (nonpos_iff_eq_zero.mp h), | |
end) | |
(λ j, begin | |
have j := (right_moves_of_state_aux _ _).to_fun j, | |
exfalso, | |
exact turn_bound_ne_zero_of_right_move j.2 (nonpos_iff_eq_zero.mp h), | |
end) | |
| (n+1) s h := | |
short.mk' | |
(λ i, short_of_relabelling (relabelling_move_left_aux (n+1) h i).symm (short_of_state_aux n _)) | |
(λ j, short_of_relabelling (relabelling_move_right_aux (n+1) h j).symm (short_of_state_aux n _)) | |
instance short_of_state (s : S) : short (of_state s) := | |
begin | |
dsimp [pgame.of_state], | |
apply_instance | |
end | |
end pgame | |
namespace game | |
/-- Construct a combinatorial `game` from a state. -/ | |
def of_state {S : Type u} [pgame.state S] (s : S) : game := ⟦pgame.of_state s⟧ | |
end game | |