Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 Mario Carneiro. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Reid Barton, Mario Carneiro, Isabel Longbottom, Scott Morrison | |
-/ | |
import data.fin.basic | |
import data.list.basic | |
import logic.relation | |
/-! | |
# Combinatorial (pre-)games. | |
The basic theory of combinatorial games, following Conway's book `On Numbers and Games`. We | |
construct "pregames", define an ordering and arithmetic operations on them, then show that the | |
operations descend to "games", defined via the equivalence relation `p ≈ q ↔ p ≤ q ∧ q ≤ p`. | |
The surreal numbers will be built as a quotient of a subtype of pregames. | |
A pregame (`pgame` below) is axiomatised via an inductive type, whose sole constructor takes two | |
types (thought of as indexing the possible moves for the players Left and Right), and a pair of | |
functions out of these types to `pgame` (thought of as describing the resulting game after making a | |
move). | |
Combinatorial games themselves, as a quotient of pregames, are constructed in `game.lean`. | |
## Conway induction | |
By construction, the induction principle for pregames is exactly "Conway induction". That is, to | |
prove some predicate `pgame → Prop` holds for all pregames, it suffices to prove that for every | |
pregame `g`, if the predicate holds for every game resulting from making a move, then it also holds | |
for `g`. | |
While it is often convenient to work "by induction" on pregames, in some situations this becomes | |
awkward, so we also define accessor functions `pgame.left_moves`, `pgame.right_moves`, | |
`pgame.move_left` and `pgame.move_right`. There is a relation `pgame.subsequent p q`, saying that | |
`p` can be reached by playing some non-empty sequence of moves starting from `q`, an instance | |
`well_founded subsequent`, and a local tactic `pgame_wf_tac` which is helpful for discharging proof | |
obligations in inductive proofs relying on this relation. | |
## Order properties | |
Pregames have both a `≤` and a `<` relation, satisfying the usual properties of a `preorder`. The | |
relation `0 < x` means that `x` can always be won by Left, while `0 ≤ x` means that `x` can be won | |
by Left as the second player. | |
It turns out to be quite convenient to define various relations on top of these. We define the "less | |
or fuzzy" relation `x ⧏ y` as `¬ y ≤ x`, the equivalence relation `x ≈ y` as `x ≤ y ∧ y ≤ x`, and | |
the fuzzy relation `x ∥ y` as `x ⧏ y ∧ y ⧏ x`. If `0 ⧏ x`, then `x` can be won by Left as the | |
first player. If `x ≈ 0`, then `x` can be won by the second player. If `x ∥ 0`, then `x` can be won | |
by the first player. | |
Statements like `zero_le_lf`, `zero_lf_le`, etc. unfold these definitions. The theorems `le_def` and | |
`lf_def` give a recursive characterisation of each relation in terms of themselves two moves later. | |
The theorems `zero_le`, `zero_lf`, etc. also take into account that `0` has no moves. | |
Later, games will be defined as the quotient by the `≈` relation; that is to say, the | |
`antisymmetrization` of `pgame`. | |
## Algebraic structures | |
We next turn to defining the operations necessary to make games into a commutative additive group. | |
Addition is defined for $x = \{xL | xR\}$ and $y = \{yL | yR\}$ by $x + y = \{xL + y, x + yL | xR + | |
y, x + yR\}$. Negation is defined by $\{xL | xR\} = \{-xR | -xL\}$. | |
The order structures interact in the expected way with addition, so we have | |
``` | |
theorem le_iff_sub_nonneg {x y : pgame} : x ≤ y ↔ 0 ≤ y - x := sorry | |
theorem lt_iff_sub_pos {x y : pgame} : x < y ↔ 0 < y - x := sorry | |
``` | |
We show that these operations respect the equivalence relation, and hence descend to games. At the | |
level of games, these operations satisfy all the laws of a commutative group. To prove the necessary | |
equivalence relations at the level of pregames, we introduce the notion of a `relabelling` of a | |
game, and show, for example, that there is a relabelling between `x + (y + z)` and `(x + y) + z`. | |
## Future work | |
* The theory of dominated and reversible positions, and unique normal form for short games. | |
* Analysis of basic domineering positions. | |
* Hex. | |
* Temperature. | |
* The development of surreal numbers, based on this development of combinatorial games, is still | |
quite incomplete. | |
## References | |
The material here is all drawn from | |
* [Conway, *On numbers and games*][conway2001] | |
An interested reader may like to formalise some of the material from | |
* [Andreas Blass, *A game semantics for linear logic*][MR1167694] | |
* [André Joyal, *Remarques sur la théorie des jeux à deux personnes*][joyal1997] | |
-/ | |
open function relation | |
universes u | |
/-! ### Pre-game moves -/ | |
/-- The type of pre-games, before we have quotiented | |
by equivalence (`pgame.setoid`). In ZFC, a combinatorial game is constructed from | |
two sets of combinatorial games that have been constructed at an earlier | |
stage. To do this in type theory, we say that a pre-game is built | |
inductively from two families of pre-games indexed over any type | |
in Type u. The resulting type `pgame.{u}` lives in `Type (u+1)`, | |
reflecting that it is a proper class in ZFC. -/ | |
inductive pgame : Type (u+1) | |
| mk : ∀ α β : Type u, (α → pgame) → (β → pgame) → pgame | |
namespace pgame | |
/-- The indexing type for allowable moves by Left. -/ | |
def left_moves : pgame → Type u | |
| (mk l _ _ _) := l | |
/-- The indexing type for allowable moves by Right. -/ | |
def right_moves : pgame → Type u | |
| (mk _ r _ _) := r | |
/-- The new game after Left makes an allowed move. -/ | |
def move_left : Π (g : pgame), left_moves g → pgame | |
| (mk l _ L _) := L | |
/-- The new game after Right makes an allowed move. -/ | |
def move_right : Π (g : pgame), right_moves g → pgame | |
| (mk _ r _ R) := R | |
@[simp] lemma left_moves_mk {xl xr xL xR} : (⟨xl, xr, xL, xR⟩ : pgame).left_moves = xl := rfl | |
@[simp] lemma move_left_mk {xl xr xL xR} : (⟨xl, xr, xL, xR⟩ : pgame).move_left = xL := rfl | |
@[simp] lemma right_moves_mk {xl xr xL xR} : (⟨xl, xr, xL, xR⟩ : pgame).right_moves = xr := rfl | |
@[simp] lemma move_right_mk {xl xr xL xR} : (⟨xl, xr, xL, xR⟩ : pgame).move_right = xR := rfl | |
/-- | |
Construct a pre-game from list of pre-games describing the available moves for Left and Right. | |
-/ | |
-- TODO define this at the level of games, as well, and perhaps also for finsets of games. | |
def of_lists (L R : list pgame.{u}) : pgame.{u} := | |
mk (ulift (fin L.length)) (ulift (fin R.length)) | |
(λ i, L.nth_le i.down i.down.is_lt) (λ j, R.nth_le j.down j.down.prop) | |
lemma left_moves_of_lists (L R : list pgame) : (of_lists L R).left_moves = ulift (fin L.length) := | |
rfl | |
lemma right_moves_of_lists (L R : list pgame) : (of_lists L R).right_moves = ulift (fin R.length) := | |
rfl | |
/-- Converts a number into a left move for `of_lists`. -/ | |
def to_of_lists_left_moves {L R : list pgame} : fin L.length ≃ (of_lists L R).left_moves := | |
((equiv.cast (left_moves_of_lists L R).symm).trans equiv.ulift).symm | |
/-- Converts a number into a right move for `of_lists`. -/ | |
def to_of_lists_right_moves {L R : list pgame} : fin R.length ≃ (of_lists L R).right_moves := | |
((equiv.cast (right_moves_of_lists L R).symm).trans equiv.ulift).symm | |
theorem of_lists_move_left {L R : list pgame} (i : fin L.length) : | |
(of_lists L R).move_left (to_of_lists_left_moves i) = L.nth_le i i.is_lt := | |
rfl | |
@[simp] theorem of_lists_move_left' {L R : list pgame} (i : (of_lists L R).left_moves) : | |
(of_lists L R).move_left i = | |
L.nth_le (to_of_lists_left_moves.symm i) (to_of_lists_left_moves.symm i).is_lt := | |
rfl | |
theorem of_lists_move_right {L R : list pgame} (i : fin R.length) : | |
(of_lists L R).move_right (to_of_lists_right_moves i) = R.nth_le i i.is_lt := | |
rfl | |
@[simp] theorem of_lists_move_right' {L R : list pgame} (i : (of_lists L R).right_moves) : | |
(of_lists L R).move_right i = | |
R.nth_le (to_of_lists_right_moves.symm i) (to_of_lists_right_moves.symm i).is_lt := | |
rfl | |
/-- A variant of `pgame.rec_on` expressed in terms of `pgame.move_left` and `pgame.move_right`. | |
Both this and `pgame.rec_on` describe Conway induction on games. -/ | |
@[elab_as_eliminator] def move_rec_on {C : pgame → Sort*} (x : pgame) | |
(IH : ∀ (y : pgame), (∀ i, C (y.move_left i)) → (∀ j, C (y.move_right j)) → C y) : C x := | |
x.rec_on $ λ yl yr yL yR, IH (mk yl yr yL yR) | |
/-- `is_option x y` means that `x` is either a left or right option for `y`. -/ | |
@[mk_iff] inductive is_option : pgame → pgame → Prop | |
| move_left {x : pgame} (i : x.left_moves) : is_option (x.move_left i) x | |
| move_right {x : pgame} (i : x.right_moves) : is_option (x.move_right i) x | |
theorem is_option.mk_left {xl xr : Type u} (xL : xl → pgame) (xR : xr → pgame) (i : xl) : | |
(xL i).is_option (mk xl xr xL xR) := | |
@is_option.move_left (mk _ _ _ _) i | |
theorem is_option.mk_right {xl xr : Type u} (xL : xl → pgame) (xR : xr → pgame) (i : xr) : | |
(xR i).is_option (mk xl xr xL xR) := | |
@is_option.move_right (mk _ _ _ _) i | |
theorem wf_is_option : well_founded is_option := | |
⟨λ x, move_rec_on x $ λ x IHl IHr, acc.intro x $ λ y h, begin | |
induction h with _ i _ j, | |
{ exact IHl i }, | |
{ exact IHr j } | |
end⟩ | |
/-- `subsequent x y` says that `x` can be obtained by playing some nonempty sequence of moves from | |
`y`. It is the transitive closure of `is_option`. -/ | |
def subsequent : pgame → pgame → Prop := | |
trans_gen is_option | |
instance : is_trans _ subsequent := trans_gen.is_trans | |
@[trans] theorem subsequent.trans {x y z} : subsequent x y → subsequent y z → subsequent x z := | |
trans_gen.trans | |
theorem wf_subsequent : well_founded subsequent := wf_is_option.trans_gen | |
instance : has_well_founded pgame := ⟨_, wf_subsequent⟩ | |
lemma subsequent.move_left {x : pgame} (i : x.left_moves) : subsequent (x.move_left i) x := | |
trans_gen.single (is_option.move_left i) | |
lemma subsequent.move_right {x : pgame} (j : x.right_moves) : subsequent (x.move_right j) x := | |
trans_gen.single (is_option.move_right j) | |
lemma subsequent.mk_left {xl xr} (xL : xl → pgame) (xR : xr → pgame) (i : xl) : | |
subsequent (xL i) (mk xl xr xL xR) := | |
@subsequent.move_left (mk _ _ _ _) i | |
lemma subsequent.mk_right {xl xr} (xL : xl → pgame) (xR : xr → pgame) (j : xr) : | |
subsequent (xR j) (mk xl xr xL xR) := | |
@subsequent.move_right (mk _ _ _ _) j | |
/-- A local tactic for proving well-foundedness of recursive definitions involving pregames. -/ | |
meta def pgame_wf_tac := | |
`[solve_by_elim | |
[psigma.lex.left, psigma.lex.right, subsequent.move_left, subsequent.move_right, | |
subsequent.mk_left, subsequent.mk_right, subsequent.trans] | |
{ max_depth := 6 }] | |
/-! ### Basic pre-games -/ | |
/-- The pre-game `zero` is defined by `0 = { | }`. -/ | |
instance : has_zero pgame := ⟨⟨pempty, pempty, pempty.elim, pempty.elim⟩⟩ | |
@[simp] lemma zero_left_moves : left_moves 0 = pempty := rfl | |
@[simp] lemma zero_right_moves : right_moves 0 = pempty := rfl | |
instance is_empty_zero_left_moves : is_empty (left_moves 0) := pempty.is_empty | |
instance is_empty_zero_right_moves : is_empty (right_moves 0) := pempty.is_empty | |
instance : inhabited pgame := ⟨0⟩ | |
/-- The pre-game `one` is defined by `1 = { 0 | }`. -/ | |
instance : has_one pgame := ⟨⟨punit, pempty, λ _, 0, pempty.elim⟩⟩ | |
@[simp] lemma one_left_moves : left_moves 1 = punit := rfl | |
@[simp] lemma one_move_left (x) : move_left 1 x = 0 := rfl | |
@[simp] lemma one_right_moves : right_moves 1 = pempty := rfl | |
instance unique_one_left_moves : unique (left_moves 1) := punit.unique | |
instance is_empty_one_right_moves : is_empty (right_moves 1) := pempty.is_empty | |
/-! ### Pre-game order relations -/ | |
/-- Define simultaneously by mutual induction the `≤` relation and its swapped converse `⧏` on | |
pre-games. | |
The ZFC definition says that `x = {xL | xR}` is less or equal to `y = {yL | yR}` if | |
`∀ x₁ ∈ xL, x₁ ⧏ y` and `∀ y₂ ∈ yR, x ⧏ y₂`, where `x ⧏ y` means `¬ y ≤ x`. This is a tricky | |
induction because it only decreases one side at a time, and it also swaps the arguments in the | |
definition of `≤`. The solution is to define `x ≤ y` and `x ⧏ y` simultaneously. -/ | |
def le_lf : Π (x y : pgame.{u}), Prop × Prop | |
| (mk xl xr xL xR) (mk yl yr yL yR) := | |
-- the orderings of the clauses here are carefully chosen so that | |
-- and.left/or.inl refer to moves by Left, and | |
-- and.right/or.inr refer to moves by Right. | |
((∀ i, (le_lf (xL i) ⟨yl, yr, yL, yR⟩).2) ∧ ∀ j, (le_lf ⟨xl, xr, xL, xR⟩ (yR j)).2, | |
(∃ i, (le_lf ⟨xl, xr, xL, xR⟩ (yL i)).1) ∨ ∃ j, (le_lf (xR j) ⟨yl, yr, yL, yR⟩).1) | |
using_well_founded { dec_tac := pgame_wf_tac } | |
/-- The less or equal relation on pre-games. | |
If `0 ≤ x`, then Left can win `x` as the second player. -/ | |
instance : has_le pgame := ⟨λ x y, (le_lf x y).1⟩ | |
/-- The less or fuzzy relation on pre-games. | |
If `0 ⧏ x`, then Left can win `x` as the first player. -/ | |
def lf (x y : pgame) : Prop := (le_lf x y).2 | |
localized "infix ` ⧏ `:50 := pgame.lf" in pgame | |
/-- Definition of `x ≤ y` on pre-games built using the constructor. -/ | |
@[simp] theorem mk_le_mk {xl xr xL xR yl yr yL yR} : | |
mk xl xr xL xR ≤ mk yl yr yL yR ↔ | |
(∀ i, xL i ⧏ mk yl yr yL yR) ∧ ∀ j, mk xl xr xL xR ⧏ yR j := | |
show (le_lf _ _).1 ↔ _, by { rw le_lf, refl } | |
/-- Definition of `x ≤ y` on pre-games, in terms of `⧏` -/ | |
theorem le_iff_forall_lf {x y : pgame} : | |
x ≤ y ↔ (∀ i, x.move_left i ⧏ y) ∧ ∀ j, x ⧏ y.move_right j := | |
by { cases x, cases y, exact mk_le_mk } | |
theorem le_of_forall_lf {x y : pgame} (h₁ : ∀ i, x.move_left i ⧏ y) (h₂ : ∀ j, x ⧏ y.move_right j) : | |
x ≤ y := | |
le_iff_forall_lf.2 ⟨h₁, h₂⟩ | |
/-- Definition of `x ⧏ y` on pre-games built using the constructor. -/ | |
@[simp] theorem mk_lf_mk {xl xr xL xR yl yr yL yR} : | |
mk xl xr xL xR ⧏ mk yl yr yL yR ↔ | |
(∃ i, mk xl xr xL xR ≤ yL i) ∨ ∃ j, xR j ≤ mk yl yr yL yR := | |
show (le_lf _ _).2 ↔ _, by { rw le_lf, refl } | |
/-- Definition of `x ⧏ y` on pre-games, in terms of `≤` -/ | |
theorem lf_iff_exists_le {x y : pgame} : | |
x ⧏ y ↔ (∃ i, x ≤ y.move_left i) ∨ ∃ j, x.move_right j ≤ y := | |
by { cases x, cases y, exact mk_lf_mk } | |
private theorem not_le_lf {x y : pgame} : (¬ x ≤ y ↔ y ⧏ x) ∧ (¬ x ⧏ y ↔ y ≤ x) := | |
begin | |
induction x with xl xr xL xR IHxl IHxr generalizing y, | |
induction y with yl yr yL yR IHyl IHyr, | |
simp only [mk_le_mk, mk_lf_mk, IHxl, IHxr, IHyl, IHyr, | |
not_and_distrib, not_or_distrib, not_forall, not_exists, | |
and_comm, or_comm, iff_self, and_self] | |
end | |
@[simp] protected theorem not_le {x y : pgame} : ¬ x ≤ y ↔ y ⧏ x := not_le_lf.1 | |
@[simp] theorem not_lf {x y : pgame} : ¬ x ⧏ y ↔ y ≤ x := not_le_lf.2 | |
theorem _root_.has_le.le.not_gf {x y : pgame} : x ≤ y → ¬ y ⧏ x := not_lf.2 | |
theorem lf.not_ge {x y : pgame} : x ⧏ y → ¬ y ≤ x := pgame.not_le.2 | |
theorem le_or_gf (x y : pgame) : x ≤ y ∨ y ⧏ x := | |
by { rw ←pgame.not_le, apply em } | |
theorem move_left_lf_of_le {x y : pgame} (h : x ≤ y) (i) : x.move_left i ⧏ y := | |
(le_iff_forall_lf.1 h).1 i | |
alias move_left_lf_of_le ← _root_.has_le.le.move_left_lf | |
theorem lf_move_right_of_le {x y : pgame} (h : x ≤ y) (j) : x ⧏ y.move_right j := | |
(le_iff_forall_lf.1 h).2 j | |
alias lf_move_right_of_le ← _root_.has_le.le.lf_move_right | |
theorem lf_of_move_right_le {x y : pgame} {j} (h : x.move_right j ≤ y) : x ⧏ y := | |
lf_iff_exists_le.2 $ or.inr ⟨j, h⟩ | |
theorem lf_of_le_move_left {x y : pgame} {i} (h : x ≤ y.move_left i) : x ⧏ y := | |
lf_iff_exists_le.2 $ or.inl ⟨i, h⟩ | |
theorem lf_of_le_mk {xl xr xL xR y} : mk xl xr xL xR ≤ y → ∀ i, xL i ⧏ y := | |
move_left_lf_of_le | |
theorem lf_of_mk_le {x yl yr yL yR} : x ≤ mk yl yr yL yR → ∀ j, x ⧏ yR j := | |
lf_move_right_of_le | |
theorem mk_lf_of_le {xl xr y j} (xL) {xR : xr → pgame} : xR j ≤ y → mk xl xr xL xR ⧏ y := | |
@lf_of_move_right_le (mk _ _ _ _) y j | |
theorem lf_mk_of_le {x yl yr} {yL : yl → pgame} (yR) {i} : x ≤ yL i → x ⧏ mk yl yr yL yR := | |
@lf_of_le_move_left x (mk _ _ _ _) i | |
/- We prove that `x ≤ y → y ≤ z ← x ≤ z` inductively, by also simultaneously proving its cyclic | |
reorderings. This auxiliary lemma is used during said induction. -/ | |
private theorem le_trans_aux {x y z : pgame} | |
(h₁ : ∀ {i}, y ≤ z → z ≤ x.move_left i → y ≤ x.move_left i) | |
(h₂ : ∀ {j}, z.move_right j ≤ x → x ≤ y → z.move_right j ≤ y) | |
(hxy : x ≤ y) (hyz : y ≤ z) : x ≤ z := | |
le_of_forall_lf | |
(λ i, pgame.not_le.1 $ λ h, (h₁ hyz h).not_gf $ hxy.move_left_lf i) | |
(λ j, pgame.not_le.1 $ λ h, (h₂ h hxy).not_gf $ hyz.lf_move_right j) | |
instance : has_lt pgame := ⟨λ x y, x ≤ y ∧ x ⧏ y⟩ | |
instance : preorder pgame := | |
{ le_refl := λ x, begin | |
induction x with _ _ _ _ IHl IHr, | |
exact le_of_forall_lf (λ i, lf_of_le_move_left (IHl i)) (λ i, lf_of_move_right_le (IHr i)) | |
end, | |
le_trans := begin | |
suffices : ∀ {x y z : pgame}, | |
(x ≤ y → y ≤ z → x ≤ z) ∧ (y ≤ z → z ≤ x → y ≤ x) ∧ (z ≤ x → x ≤ y → z ≤ y), | |
from λ x y z, this.1, | |
intros x y z, | |
induction x with xl xr xL xR IHxl IHxr generalizing y z, | |
induction y with yl yr yL yR IHyl IHyr generalizing z, | |
induction z with zl zr zL zR IHzl IHzr, | |
exact ⟨le_trans_aux (λ i, (IHxl i).2.1) (λ j, (IHzr j).2.2), | |
le_trans_aux (λ i, (IHyl i).2.2) (λ j, (IHxr j).1), | |
le_trans_aux (λ i, (IHzl i).1) (λ j, (IHyr j).2.1)⟩ | |
end, | |
lt_iff_le_not_le := λ x y, by { rw pgame.not_le, refl }, | |
..pgame.has_le, ..pgame.has_lt } | |
theorem lt_iff_le_and_lf {x y : pgame} : x < y ↔ x ≤ y ∧ x ⧏ y := iff.rfl | |
theorem lt_of_le_of_lf {x y : pgame} (h₁ : x ≤ y) (h₂ : x ⧏ y) : x < y := ⟨h₁, h₂⟩ | |
theorem lf_of_lt {x y : pgame} (h : x < y) : x ⧏ y := h.2 | |
alias lf_of_lt ← _root_.has_lt.lt.lf | |
theorem lf_irrefl (x : pgame) : ¬ x ⧏ x := le_rfl.not_gf | |
instance : is_irrefl _ (⧏) := ⟨lf_irrefl⟩ | |
@[trans] theorem lf_of_le_of_lf {x y z : pgame} (h₁ : x ≤ y) (h₂ : y ⧏ z) : x ⧏ z := | |
by { rw ←pgame.not_le at h₂ ⊢, exact λ h₃, h₂ (h₃.trans h₁) } | |
@[trans] theorem lf_of_lf_of_le {x y z : pgame} (h₁ : x ⧏ y) (h₂ : y ≤ z) : x ⧏ z := | |
by { rw ←pgame.not_le at h₁ ⊢, exact λ h₃, h₁ (h₂.trans h₃) } | |
alias lf_of_le_of_lf ← _root_.has_le.le.trans_lf | |
alias lf_of_lf_of_le ← lf.trans_le | |
@[trans] theorem lf_of_lt_of_lf {x y z : pgame} (h₁ : x < y) (h₂ : y ⧏ z) : x ⧏ z := | |
h₁.le.trans_lf h₂ | |
@[trans] theorem lf_of_lf_of_lt {x y z : pgame} (h₁ : x ⧏ y) (h₂ : y < z) : x ⧏ z := | |
h₁.trans_le h₂.le | |
alias lf_of_lt_of_lf ← _root_.has_lt.lt.trans_lf | |
alias lf_of_lf_of_lt ← lf.trans_lt | |
theorem move_left_lf {x : pgame} : ∀ i, x.move_left i ⧏ x := | |
le_rfl.move_left_lf | |
theorem lf_move_right {x : pgame} : ∀ j, x ⧏ x.move_right j := | |
le_rfl.lf_move_right | |
theorem lf_mk {xl xr} (xL : xl → pgame) (xR : xr → pgame) (i) : xL i ⧏ mk xl xr xL xR := | |
@move_left_lf (mk _ _ _ _) i | |
theorem mk_lf {xl xr} (xL : xl → pgame) (xR : xr → pgame) (j) : mk xl xr xL xR ⧏ xR j := | |
@lf_move_right (mk _ _ _ _) j | |
/-- This special case of `pgame.le_of_forall_lf` is useful when dealing with surreals, where `<` is | |
preferred over `⧏`. -/ | |
theorem le_of_forall_lt {x y : pgame} (h₁ : ∀ i, x.move_left i < y) (h₂ : ∀ j, x < y.move_right j) : | |
x ≤ y := | |
le_of_forall_lf (λ i, (h₁ i).lf) (λ i, (h₂ i).lf) | |
/-- The definition of `x ≤ y` on pre-games, in terms of `≤` two moves later. -/ | |
theorem le_def {x y : pgame} : x ≤ y ↔ | |
(∀ i, (∃ i', x.move_left i ≤ y.move_left i') ∨ ∃ j, (x.move_left i).move_right j ≤ y) ∧ | |
∀ j, (∃ i, x ≤ (y.move_right j).move_left i) ∨ ∃ j', x.move_right j' ≤ y.move_right j := | |
by { rw le_iff_forall_lf, conv { to_lhs, simp only [lf_iff_exists_le] } } | |
/-- The definition of `x ⧏ y` on pre-games, in terms of `⧏` two moves later. -/ | |
theorem lf_def {x y : pgame} : x ⧏ y ↔ | |
(∃ i, (∀ i', x.move_left i' ⧏ y.move_left i) ∧ ∀ j, x ⧏ (y.move_left i).move_right j) ∨ | |
∃ j, (∀ i, (x.move_right j).move_left i ⧏ y) ∧ ∀ j', x.move_right j ⧏ y.move_right j' := | |
by { rw lf_iff_exists_le, conv { to_lhs, simp only [le_iff_forall_lf] } } | |
/-- The definition of `0 ≤ x` on pre-games, in terms of `0 ⧏`. -/ | |
theorem zero_le_lf {x : pgame} : 0 ≤ x ↔ ∀ j, 0 ⧏ x.move_right j := | |
by { rw le_iff_forall_lf, simp } | |
/-- The definition of `x ≤ 0` on pre-games, in terms of `⧏ 0`. -/ | |
theorem le_zero_lf {x : pgame} : x ≤ 0 ↔ ∀ i, x.move_left i ⧏ 0 := | |
by { rw le_iff_forall_lf, simp } | |
/-- The definition of `0 ⧏ x` on pre-games, in terms of `0 ≤`. -/ | |
theorem zero_lf_le {x : pgame} : 0 ⧏ x ↔ ∃ i, 0 ≤ x.move_left i := | |
by { rw lf_iff_exists_le, simp } | |
/-- The definition of `x ⧏ 0` on pre-games, in terms of `≤ 0`. -/ | |
theorem lf_zero_le {x : pgame} : x ⧏ 0 ↔ ∃ j, x.move_right j ≤ 0 := | |
by { rw lf_iff_exists_le, simp } | |
/-- The definition of `0 ≤ x` on pre-games, in terms of `0 ≤` two moves later. -/ | |
theorem zero_le {x : pgame} : 0 ≤ x ↔ ∀ j, ∃ i, 0 ≤ (x.move_right j).move_left i := | |
by { rw le_def, simp } | |
/-- The definition of `x ≤ 0` on pre-games, in terms of `≤ 0` two moves later. -/ | |
theorem le_zero {x : pgame} : x ≤ 0 ↔ ∀ i, ∃ j, (x.move_left i).move_right j ≤ 0 := | |
by { rw le_def, simp } | |
/-- The definition of `0 ⧏ x` on pre-games, in terms of `0 ⧏` two moves later. -/ | |
theorem zero_lf {x : pgame} : 0 ⧏ x ↔ ∃ i, ∀ j, 0 ⧏ (x.move_left i).move_right j := | |
by { rw lf_def, simp } | |
/-- The definition of `x ⧏ 0` on pre-games, in terms of `⧏ 0` two moves later. -/ | |
theorem lf_zero {x : pgame} : x ⧏ 0 ↔ ∃ j, ∀ i, (x.move_right j).move_left i ⧏ 0 := | |
by { rw lf_def, simp } | |
@[simp] theorem zero_le_of_is_empty_right_moves (x : pgame) [is_empty x.right_moves] : 0 ≤ x := | |
zero_le.2 is_empty_elim | |
@[simp] theorem le_zero_of_is_empty_left_moves (x : pgame) [is_empty x.left_moves] : x ≤ 0 := | |
le_zero.2 is_empty_elim | |
/-- Given a game won by the right player when they play second, provide a response to any move by | |
left. -/ | |
noncomputable def right_response {x : pgame} (h : x ≤ 0) (i : x.left_moves) : | |
(x.move_left i).right_moves := | |
classical.some $ (le_zero.1 h) i | |
/-- Show that the response for right provided by `right_response` preserves the right-player-wins | |
condition. -/ | |
lemma right_response_spec {x : pgame} (h : x ≤ 0) (i : x.left_moves) : | |
(x.move_left i).move_right (right_response h i) ≤ 0 := | |
classical.some_spec $ (le_zero.1 h) i | |
/-- Given a game won by the left player when they play second, provide a response to any move by | |
right. -/ | |
noncomputable def left_response {x : pgame} (h : 0 ≤ x) (j : x.right_moves) : | |
(x.move_right j).left_moves := | |
classical.some $ (zero_le.1 h) j | |
/-- Show that the response for left provided by `left_response` preserves the left-player-wins | |
condition. -/ | |
lemma left_response_spec {x : pgame} (h : 0 ≤ x) (j : x.right_moves) : | |
0 ≤ (x.move_right j).move_left (left_response h j) := | |
classical.some_spec $ (zero_le.1 h) j | |
/-- The equivalence relation on pre-games. Two pre-games `x`, `y` are equivalent if `x ≤ y` and | |
`y ≤ x`. | |
If `x ≈ 0`, then the second player can always win `x`. -/ | |
def equiv (x y : pgame) : Prop := x ≤ y ∧ y ≤ x | |
localized "infix ` ≈ ` := pgame.equiv" in pgame | |
instance : is_equiv _ (≈) := | |
{ refl := λ x, ⟨le_rfl, le_rfl⟩, | |
trans := λ x y z ⟨xy, yx⟩ ⟨yz, zy⟩, ⟨xy.trans yz, zy.trans yx⟩, | |
symm := λ x y, and.symm } | |
theorem equiv.le {x y : pgame} (h : x ≈ y) : x ≤ y := h.1 | |
theorem equiv.ge {x y : pgame} (h : x ≈ y) : y ≤ x := h.2 | |
@[refl, simp] theorem equiv_rfl {x} : x ≈ x := refl x | |
theorem equiv_refl (x) : x ≈ x := refl x | |
@[symm] protected theorem equiv.symm {x y} : x ≈ y → y ≈ x := symm | |
@[trans] protected theorem equiv.trans {x y z} : x ≈ y → y ≈ z → x ≈ z := trans | |
protected theorem equiv_comm {x y} : x ≈ y ↔ y ≈ x := comm | |
theorem equiv_of_eq {x y} (h : x = y) : x ≈ y := by subst h | |
@[trans] theorem le_of_le_of_equiv {x y z} (h₁ : x ≤ y) (h₂ : y ≈ z) : x ≤ z := h₁.trans h₂.1 | |
@[trans] theorem le_of_equiv_of_le {x y z} (h₁ : x ≈ y) : y ≤ z → x ≤ z := h₁.1.trans | |
theorem lf.not_equiv {x y} (h : x ⧏ y) : ¬ x ≈ y := λ h', h.not_ge h'.2 | |
theorem lf.not_equiv' {x y} (h : x ⧏ y) : ¬ y ≈ x := λ h', h.not_ge h'.1 | |
theorem lf.not_gt {x y} (h : x ⧏ y) : ¬ y < x := λ h', h.not_ge h'.le | |
theorem le_congr_imp {x₁ y₁ x₂ y₂} (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) (h : x₁ ≤ y₁) : x₂ ≤ y₂ := | |
hx.2.trans (h.trans hy.1) | |
theorem le_congr {x₁ y₁ x₂ y₂} (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ ≤ y₁ ↔ x₂ ≤ y₂ := | |
⟨le_congr_imp hx hy, le_congr_imp hx.symm hy.symm⟩ | |
theorem le_congr_left {x₁ x₂ y} (hx : x₁ ≈ x₂) : x₁ ≤ y ↔ x₂ ≤ y := | |
le_congr hx equiv_rfl | |
theorem le_congr_right {x y₁ y₂} (hy : y₁ ≈ y₂) : x ≤ y₁ ↔ x ≤ y₂ := | |
le_congr equiv_rfl hy | |
theorem lf_congr {x₁ y₁ x₂ y₂} (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ ⧏ y₁ ↔ x₂ ⧏ y₂ := | |
pgame.not_le.symm.trans $ (not_congr (le_congr hy hx)).trans pgame.not_le | |
theorem lf_congr_imp {x₁ y₁ x₂ y₂} (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ ⧏ y₁ → x₂ ⧏ y₂ := | |
(lf_congr hx hy).1 | |
theorem lf_congr_left {x₁ x₂ y} (hx : x₁ ≈ x₂) : x₁ ⧏ y ↔ x₂ ⧏ y := | |
lf_congr hx equiv_rfl | |
theorem lf_congr_right {x y₁ y₂} (hy : y₁ ≈ y₂) : x ⧏ y₁ ↔ x ⧏ y₂ := | |
lf_congr equiv_rfl hy | |
@[trans] theorem lf_of_lf_of_equiv {x y z} (h₁ : x ⧏ y) (h₂ : y ≈ z) : x ⧏ z := | |
lf_congr_imp equiv_rfl h₂ h₁ | |
@[trans] theorem lf_of_equiv_of_lf {x y z} (h₁ : x ≈ y) : y ⧏ z → x ⧏ z := | |
lf_congr_imp h₁.symm equiv_rfl | |
@[trans] theorem lt_of_lt_of_equiv {x y z} (h₁ : x < y) (h₂ : y ≈ z) : x < z := h₁.trans_le h₂.1 | |
@[trans] theorem lt_of_equiv_of_lt {x y z} (h₁ : x ≈ y) : y < z → x < z := h₁.1.trans_lt | |
theorem lt_congr_imp {x₁ y₁ x₂ y₂} (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) (h : x₁ < y₁) : x₂ < y₂ := | |
hx.2.trans_lt (h.trans_le hy.1) | |
theorem lt_congr {x₁ y₁ x₂ y₂} (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ < y₁ ↔ x₂ < y₂ := | |
⟨lt_congr_imp hx hy, lt_congr_imp hx.symm hy.symm⟩ | |
theorem lt_congr_left {x₁ x₂ y} (hx : x₁ ≈ x₂) : x₁ < y ↔ x₂ < y := | |
lt_congr hx equiv_rfl | |
theorem lt_congr_right {x y₁ y₂} (hy : y₁ ≈ y₂) : x < y₁ ↔ x < y₂ := | |
lt_congr equiv_rfl hy | |
theorem lt_or_equiv_of_le {x y : pgame} (h : x ≤ y) : x < y ∨ x ≈ y := | |
and_or_distrib_left.mp ⟨h, (em $ y ≤ x).swap.imp_left pgame.not_le.1⟩ | |
theorem lf_or_equiv_or_gf (x y : pgame) : x ⧏ y ∨ x ≈ y ∨ y ⧏ x := | |
begin | |
by_cases h : x ⧏ y, | |
{ exact or.inl h }, | |
{ right, | |
cases (lt_or_equiv_of_le (pgame.not_lf.1 h)) with h' h', | |
{ exact or.inr h'.lf }, | |
{ exact or.inl h'.symm } } | |
end | |
theorem equiv_congr_left {y₁ y₂} : y₁ ≈ y₂ ↔ ∀ x₁, x₁ ≈ y₁ ↔ x₁ ≈ y₂ := | |
⟨λ h x₁, ⟨λ h', h'.trans h, λ h', h'.trans h.symm⟩, | |
λ h, (h y₁).1 $ equiv_rfl⟩ | |
theorem equiv_congr_right {x₁ x₂} : x₁ ≈ x₂ ↔ ∀ y₁, x₁ ≈ y₁ ↔ x₂ ≈ y₁ := | |
⟨λ h y₁, ⟨λ h', h.symm.trans h', λ h', h.trans h'⟩, | |
λ h, (h x₂).2 $ equiv_rfl⟩ | |
theorem equiv_of_mk_equiv {x y : pgame} | |
(L : x.left_moves ≃ y.left_moves) (R : x.right_moves ≃ y.right_moves) | |
(hl : ∀ i, x.move_left i ≈ y.move_left (L i)) | |
(hr : ∀ j, x.move_right j ≈ y.move_right (R j)) : x ≈ y := | |
begin | |
fsplit; rw le_def, | |
{ exact ⟨λ i, or.inl ⟨_, (hl i).1⟩, λ j, or.inr ⟨_, by simpa using (hr (R.symm j)).1⟩⟩ }, | |
{ exact ⟨λ i, or.inl ⟨_, by simpa using (hl (L.symm i)).2⟩, λ j, or.inr ⟨_, (hr j).2⟩⟩ } | |
end | |
/-- The fuzzy, confused, or incomparable relation on pre-games. | |
If `x ∥ 0`, then the first player can always win `x`. -/ | |
def fuzzy (x y : pgame) : Prop := x ⧏ y ∧ y ⧏ x | |
localized "infix ` ∥ `:50 := pgame.fuzzy" in pgame | |
@[symm] theorem fuzzy.swap {x y : pgame} : x ∥ y → y ∥ x := and.swap | |
instance : is_symm _ (∥) := ⟨λ x y, fuzzy.swap⟩ | |
theorem fuzzy.swap_iff {x y : pgame} : x ∥ y ↔ y ∥ x := ⟨fuzzy.swap, fuzzy.swap⟩ | |
theorem fuzzy_irrefl (x : pgame) : ¬ x ∥ x := λ h, lf_irrefl x h.1 | |
instance : is_irrefl _ (∥) := ⟨fuzzy_irrefl⟩ | |
theorem lf_iff_lt_or_fuzzy {x y : pgame} : x ⧏ y ↔ x < y ∨ x ∥ y := | |
by { simp only [lt_iff_le_and_lf, fuzzy, ←pgame.not_le], tauto! } | |
theorem lf_of_fuzzy {x y : pgame} (h : x ∥ y) : x ⧏ y := lf_iff_lt_or_fuzzy.2 (or.inr h) | |
alias lf_of_fuzzy ← fuzzy.lf | |
theorem lt_or_fuzzy_of_lf {x y : pgame} : x ⧏ y → x < y ∨ x ∥ y := | |
lf_iff_lt_or_fuzzy.1 | |
theorem fuzzy.not_equiv {x y : pgame} (h : x ∥ y) : ¬ x ≈ y := | |
λ h', h'.1.not_gf h.2 | |
theorem fuzzy.not_equiv' {x y : pgame} (h : x ∥ y) : ¬ y ≈ x := | |
λ h', h'.2.not_gf h.2 | |
theorem not_fuzzy_of_le {x y : pgame} (h : x ≤ y) : ¬ x ∥ y := | |
λ h', h'.2.not_ge h | |
theorem not_fuzzy_of_ge {x y : pgame} (h : y ≤ x) : ¬ x ∥ y := | |
λ h', h'.1.not_ge h | |
theorem equiv.not_fuzzy {x y : pgame} (h : x ≈ y) : ¬ x ∥ y := | |
not_fuzzy_of_le h.1 | |
theorem equiv.not_fuzzy' {x y : pgame} (h : x ≈ y) : ¬ y ∥ x := | |
not_fuzzy_of_le h.2 | |
theorem fuzzy_congr {x₁ y₁ x₂ y₂ : pgame} (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ ∥ y₁ ↔ x₂ ∥ y₂ := | |
show _ ∧ _ ↔ _ ∧ _, by rw [lf_congr hx hy, lf_congr hy hx] | |
theorem fuzzy_congr_imp {x₁ y₁ x₂ y₂ : pgame} (hx : x₁ ≈ x₂) (hy : y₁ ≈ y₂) : x₁ ∥ y₁ → x₂ ∥ y₂ := | |
(fuzzy_congr hx hy).1 | |
theorem fuzzy_congr_left {x₁ x₂ y} (hx : x₁ ≈ x₂) : x₁ ∥ y ↔ x₂ ∥ y := | |
fuzzy_congr hx equiv_rfl | |
theorem fuzzy_congr_right {x y₁ y₂} (hy : y₁ ≈ y₂) : x ∥ y₁ ↔ x ∥ y₂ := | |
fuzzy_congr equiv_rfl hy | |
@[trans] theorem fuzzy_of_fuzzy_of_equiv {x y z} (h₁ : x ∥ y) (h₂ : y ≈ z) : x ∥ z := | |
(fuzzy_congr_right h₂).1 h₁ | |
@[trans] theorem fuzzy_of_equiv_of_fuzzy {x y z} (h₁ : x ≈ y) (h₂ : y ∥ z) : x ∥ z := | |
(fuzzy_congr_left h₁).2 h₂ | |
/-- Exactly one of the following is true (although we don't prove this here). -/ | |
theorem lt_or_equiv_or_gt_or_fuzzy (x y : pgame) : x < y ∨ x ≈ y ∨ y < x ∨ x ∥ y := | |
begin | |
cases le_or_gf x y with h₁ h₁; | |
cases le_or_gf y x with h₂ h₂, | |
{ right, left, exact ⟨h₁, h₂⟩ }, | |
{ left, exact ⟨h₁, h₂⟩ }, | |
{ right, right, left, exact ⟨h₂, h₁⟩ }, | |
{ right, right, right, exact ⟨h₂, h₁⟩ } | |
end | |
theorem lt_or_equiv_or_gf (x y : pgame) : x < y ∨ x ≈ y ∨ y ⧏ x := | |
begin | |
rw [lf_iff_lt_or_fuzzy, fuzzy.swap_iff], | |
exact lt_or_equiv_or_gt_or_fuzzy x y | |
end | |
/-! ### Relabellings -/ | |
/-- `restricted x y` says that Left always has no more moves in `x` than in `y`, | |
and Right always has no more moves in `y` than in `x` -/ | |
inductive restricted : pgame.{u} → pgame.{u} → Type (u+1) | |
| mk : Π {x y : pgame} (L : x.left_moves → y.left_moves) (R : y.right_moves → x.right_moves), | |
(∀ i, restricted (x.move_left i) (y.move_left (L i))) → | |
(∀ j, restricted (x.move_right (R j)) (y.move_right j)) → restricted x y | |
/-- The identity restriction. -/ | |
@[refl] def restricted.refl : Π (x : pgame), restricted x x | |
| x := ⟨_, _, λ i, restricted.refl _, λ j, restricted.refl _⟩ | |
using_well_founded { dec_tac := pgame_wf_tac } | |
instance (x : pgame) : inhabited (restricted x x) := ⟨restricted.refl _⟩ | |
/-- Transitivity of restriction. -/ | |
def restricted.trans : Π {x y z : pgame} (r : restricted x y) (s : restricted y z), restricted x z | |
| x y z ⟨L₁, R₁, hL₁, hR₁⟩ ⟨L₂, R₂, hL₂, hR₂⟩ := | |
⟨_, _, λ i, (hL₁ i).trans (hL₂ _), λ j, (hR₁ _).trans (hR₂ j)⟩ | |
theorem restricted.le : Π {x y : pgame} (r : restricted x y), x ≤ y | |
| x y ⟨L, R, hL, hR⟩ := | |
le_def.2 ⟨λ i, or.inl ⟨L i, (hL i).le⟩, λ i, or.inr ⟨R i, (hR i).le⟩⟩ | |
/-- | |
`relabelling x y` says that `x` and `y` are really the same game, just dressed up differently. | |
Specifically, there is a bijection between the moves for Left in `x` and in `y`, and similarly | |
for Right, and under these bijections we inductively have `relabelling`s for the consequent games. | |
-/ | |
inductive relabelling : pgame.{u} → pgame.{u} → Type (u+1) | |
| mk : Π {x y : pgame} (L : x.left_moves ≃ y.left_moves) (R : x.right_moves ≃ y.right_moves), | |
(∀ i, relabelling (x.move_left i) (y.move_left (L i))) → | |
(∀ j, relabelling (x.move_right j) (y.move_right (R j))) → | |
relabelling x y | |
localized "infix ` ≡r `:50 := pgame.relabelling" in pgame | |
namespace relabelling | |
variables {x y : pgame.{u}} | |
/-- A constructor for relabellings swapping the equivalences. -/ | |
def mk' (L : y.left_moves ≃ x.left_moves) (R : y.right_moves ≃ x.right_moves) | |
(hL : ∀ i, x.move_left (L i) ≡r y.move_left i) | |
(hR : ∀ j, x.move_right (R j) ≡r y.move_right j) : x ≡r y := | |
⟨L.symm, R.symm, λ i, by simpa using hL (L.symm i), λ j, by simpa using hR (R.symm j)⟩ | |
/-- The equivalence between left moves of `x` and `y` given by the relabelling. -/ | |
def left_moves_equiv : Π (r : x ≡r y), x.left_moves ≃ y.left_moves | |
| ⟨L, R, hL, hR⟩ := L | |
@[simp] theorem mk_left_moves_equiv {x y L R hL hR} : | |
(@relabelling.mk x y L R hL hR).left_moves_equiv = L := rfl | |
@[simp] theorem mk'_left_moves_equiv {x y L R hL hR} : | |
(@relabelling.mk' x y L R hL hR).left_moves_equiv = L.symm := rfl | |
/-- The equivalence between right moves of `x` and `y` given by the relabelling. -/ | |
def right_moves_equiv : Π (r : x ≡r y), x.right_moves ≃ y.right_moves | |
| ⟨L, R, hL, hR⟩ := R | |
@[simp] theorem mk_right_moves_equiv {x y L R hL hR} : | |
(@relabelling.mk x y L R hL hR).right_moves_equiv = R := rfl | |
@[simp] theorem mk'_right_moves_equiv {x y L R hL hR} : | |
(@relabelling.mk' x y L R hL hR).right_moves_equiv = R.symm := rfl | |
/-- A left move of `x` is a relabelling of a left move of `y`. -/ | |
def move_left : ∀ (r : x ≡r y) (i : x.left_moves), | |
x.move_left i ≡r y.move_left (r.left_moves_equiv i) | |
| ⟨L, R, hL, hR⟩ := hL | |
/-- A left move of `y` is a relabelling of a left move of `x`. -/ | |
def move_left_symm : ∀ (r : x ≡r y) (i : y.left_moves), | |
x.move_left (r.left_moves_equiv.symm i) ≡r y.move_left i | |
| ⟨L, R, hL, hR⟩ i := by simpa using hL (L.symm i) | |
/-- A right move of `x` is a relabelling of a right move of `y`. -/ | |
def move_right : ∀ (r : x ≡r y) (i : x.right_moves), | |
x.move_right i ≡r y.move_right (r.right_moves_equiv i) | |
| ⟨L, R, hL, hR⟩ := hR | |
/-- A right move of `y` is a relabelling of a right move of `x`. -/ | |
def move_right_symm : ∀ (r : x ≡r y) (i : y.right_moves), | |
x.move_right (r.right_moves_equiv.symm i) ≡r y.move_right i | |
| ⟨L, R, hL, hR⟩ i := by simpa using hR (R.symm i) | |
/-- If `x` is a relabelling of `y`, then `x` is a restriction of `y`. -/ | |
def restricted : Π {x y : pgame} (r : x ≡r y), restricted x y | |
| x y r := ⟨_, _, λ i, (r.move_left i).restricted, λ j, (r.move_right_symm j).restricted⟩ | |
using_well_founded { dec_tac := pgame_wf_tac } | |
/-! It's not the case that `restricted x y → restricted y x → x ≡r y`, but if we insisted that the | |
maps in a restriction were injective, then one could use Schröder-Bernstein for do this. -/ | |
/-- The identity relabelling. -/ | |
@[refl] def refl : Π (x : pgame), x ≡r x | |
| x := ⟨equiv.refl _, equiv.refl _, λ i, refl _, λ j, refl _⟩ | |
using_well_founded { dec_tac := pgame_wf_tac } | |
instance (x : pgame) : inhabited (x ≡r x) := ⟨refl _⟩ | |
/-- Flip a relabelling. -/ | |
@[symm] def symm : Π {x y : pgame}, x ≡r y → y ≡r x | |
| x y ⟨L, R, hL, hR⟩ := mk' L R (λ i, (hL i).symm) (λ j, (hR j).symm) | |
theorem le (r : x ≡r y) : x ≤ y := r.restricted.le | |
theorem ge (r : x ≡r y) : y ≤ x := r.symm.restricted.le | |
/-- A relabelling lets us prove equivalence of games. -/ | |
theorem equiv (r : x ≡r y) : x ≈ y := ⟨r.le, r.ge⟩ | |
/-- Transitivity of relabelling. -/ | |
@[trans] def trans : Π {x y z : pgame}, x ≡r y → y ≡r z → x ≡r z | |
| x y z ⟨L₁, R₁, hL₁, hR₁⟩ ⟨L₂, R₂, hL₂, hR₂⟩ := | |
⟨L₁.trans L₂, R₁.trans R₂, λ i, (hL₁ i).trans (hL₂ _), λ j, (hR₁ j).trans (hR₂ _)⟩ | |
/-- Any game without left or right moves is a relabelling of 0. -/ | |
def is_empty (x : pgame) [is_empty x.left_moves] [is_empty x.right_moves] : x ≡r 0 := | |
⟨equiv.equiv_pempty _, equiv.equiv_of_is_empty _ _, is_empty_elim, is_empty_elim⟩ | |
end relabelling | |
theorem equiv.is_empty (x : pgame) [is_empty x.left_moves] [is_empty x.right_moves] : x ≈ 0 := | |
(relabelling.is_empty x).equiv | |
instance {x y : pgame} : has_coe (x ≡r y) (x ≈ y) := ⟨relabelling.equiv⟩ | |
/-- Replace the types indexing the next moves for Left and Right by equivalent types. -/ | |
def relabel {x : pgame} {xl' xr'} (el : xl' ≃ x.left_moves) (er : xr' ≃ x.right_moves) : pgame := | |
⟨xl', xr', x.move_left ∘ el, x.move_right ∘ er⟩ | |
@[simp] lemma relabel_move_left' {x : pgame} {xl' xr'} | |
(el : xl' ≃ x.left_moves) (er : xr' ≃ x.right_moves) (i : xl') : | |
move_left (relabel el er) i = x.move_left (el i) := | |
rfl | |
@[simp] lemma relabel_move_left {x : pgame} {xl' xr'} | |
(el : xl' ≃ x.left_moves) (er : xr' ≃ x.right_moves) (i : x.left_moves) : | |
move_left (relabel el er) (el.symm i) = x.move_left i := | |
by simp | |
@[simp] lemma relabel_move_right' {x : pgame} {xl' xr'} | |
(el : xl' ≃ x.left_moves) (er : xr' ≃ x.right_moves) (j : xr') : | |
move_right (relabel el er) j = x.move_right (er j) := | |
rfl | |
@[simp] lemma relabel_move_right {x : pgame} {xl' xr'} | |
(el : xl' ≃ x.left_moves) (er : xr' ≃ x.right_moves) (j : x.right_moves) : | |
move_right (relabel el er) (er.symm j) = x.move_right j := | |
by simp | |
/-- The game obtained by relabelling the next moves is a relabelling of the original game. -/ | |
def relabel_relabelling {x : pgame} {xl' xr'} (el : xl' ≃ x.left_moves) (er : xr' ≃ x.right_moves) : | |
x ≡r relabel el er := | |
relabelling.mk' el er (λ i, by simp) (λ j, by simp) | |
/-! ### Negation -/ | |
/-- The negation of `{L | R}` is `{-R | -L}`. -/ | |
def neg : pgame → pgame | |
| ⟨l, r, L, R⟩ := ⟨r, l, λ i, neg (R i), λ i, neg (L i)⟩ | |
instance : has_neg pgame := ⟨neg⟩ | |
@[simp] lemma neg_def {xl xr xL xR} : -(mk xl xr xL xR) = mk xr xl (λ j, -(xR j)) (λ i, -(xL i)) := | |
rfl | |
instance : has_involutive_neg pgame := | |
{ neg_neg := λ x, begin | |
induction x with xl xr xL xR ihL ihR, | |
simp_rw [neg_def, ihL, ihR], | |
exact ⟨rfl, rfl, heq.rfl, heq.rfl⟩, | |
end, | |
..pgame.has_neg } | |
@[simp] protected lemma neg_zero : -(0 : pgame) = 0 := | |
begin | |
dsimp [has_zero.zero, has_neg.neg, neg], | |
congr; funext i; cases i | |
end | |
@[simp] lemma neg_of_lists (L R : list pgame) : | |
-of_lists L R = of_lists (R.map (λ x, -x)) (L.map (λ x, -x)) := | |
begin | |
simp only [of_lists, neg_def, list.length_map, list.nth_le_map', eq_self_iff_true, true_and], | |
split, all_goals | |
{ apply hfunext, | |
{ simp }, | |
{ intros a a' ha, | |
congr' 2, | |
have : ∀ {m n} (h₁ : m = n) {b : ulift (fin m)} {c : ulift (fin n)} (h₂ : b == c), | |
(b.down : ℕ) = ↑c.down, | |
{ rintros m n rfl b c rfl, refl }, | |
exact this (list.length_map _ _).symm ha } } | |
end | |
theorem is_option_neg {x y : pgame} : is_option x (-y) ↔ is_option (-x) y := | |
begin | |
rw [is_option_iff, is_option_iff, or_comm], | |
cases y, apply or_congr; | |
{ apply exists_congr, intro, rw ← neg_eq_iff_neg_eq, exact eq_comm }, | |
end | |
@[simp] theorem is_option_neg_neg {x y : pgame} : is_option (-x) (-y) ↔ is_option x y := | |
by rw [is_option_neg, neg_neg] | |
theorem left_moves_neg : ∀ x : pgame, (-x).left_moves = x.right_moves | |
| ⟨_, _, _, _⟩ := rfl | |
theorem right_moves_neg : ∀ x : pgame, (-x).right_moves = x.left_moves | |
| ⟨_, _, _, _⟩ := rfl | |
/-- Turns a right move for `x` into a left move for `-x` and vice versa. | |
Even though these types are the same (not definitionally so), this is the preferred way to convert | |
between them. -/ | |
def to_left_moves_neg {x : pgame} : x.right_moves ≃ (-x).left_moves := | |
equiv.cast (left_moves_neg x).symm | |
/-- Turns a left move for `x` into a right move for `-x` and vice versa. | |
Even though these types are the same (not definitionally so), this is the preferred way to convert | |
between them. -/ | |
def to_right_moves_neg {x : pgame} : x.left_moves ≃ (-x).right_moves := | |
equiv.cast (right_moves_neg x).symm | |
lemma move_left_neg {x : pgame} (i) : | |
(-x).move_left (to_left_moves_neg i) = -x.move_right i := | |
by { cases x, refl } | |
@[simp] lemma move_left_neg' {x : pgame} (i) : | |
(-x).move_left i = -x.move_right (to_left_moves_neg.symm i) := | |
by { cases x, refl } | |
lemma move_right_neg {x : pgame} (i) : | |
(-x).move_right (to_right_moves_neg i) = -(x.move_left i) := | |
by { cases x, refl } | |
@[simp] lemma move_right_neg' {x : pgame} (i) : | |
(-x).move_right i = -x.move_left (to_right_moves_neg.symm i) := | |
by { cases x, refl } | |
lemma move_left_neg_symm {x : pgame} (i) : | |
x.move_left (to_right_moves_neg.symm i) = -(-x).move_right i := | |
by simp | |
lemma move_left_neg_symm' {x : pgame} (i) : | |
x.move_left i = -(-x).move_right (to_right_moves_neg i) := | |
by simp | |
lemma move_right_neg_symm {x : pgame} (i) : | |
x.move_right (to_left_moves_neg.symm i) = -(-x).move_left i := | |
by simp | |
lemma move_right_neg_symm' {x : pgame} (i) : | |
x.move_right i = -(-x).move_left (to_left_moves_neg i) := | |
by simp | |
/-- If `x` has the same moves as `y`, then `-x` has the sames moves as `-y`. -/ | |
def relabelling.neg_congr : ∀ {x y : pgame}, x ≡r y → -x ≡r -y | |
| ⟨xl, xr, xL, xR⟩ ⟨yl, yr, yL, yR⟩ ⟨L, R, hL, hR⟩ := | |
⟨R, L, λ j, (hR j).neg_congr, λ i, (hL i).neg_congr⟩ | |
private theorem neg_le_lf_neg_iff : | |
Π {x y : pgame.{u}}, (-y ≤ -x ↔ x ≤ y) ∧ (-y ⧏ -x ↔ x ⧏ y) | |
| (mk xl xr xL xR) (mk yl yr yL yR) := | |
begin | |
simp_rw [neg_def, mk_le_mk, mk_lf_mk, ← neg_def], | |
split, | |
{ rw and_comm, apply and_congr; exact forall_congr (λ _, neg_le_lf_neg_iff.2) }, | |
{ rw or_comm, apply or_congr; exact exists_congr (λ _, neg_le_lf_neg_iff.1) }, | |
end | |
using_well_founded { dec_tac := pgame_wf_tac } | |
@[simp] theorem neg_le_neg_iff {x y : pgame} : -y ≤ -x ↔ x ≤ y := neg_le_lf_neg_iff.1 | |
@[simp] theorem neg_lf_neg_iff {x y : pgame} : -y ⧏ -x ↔ x ⧏ y := neg_le_lf_neg_iff.2 | |
@[simp] theorem neg_lt_neg_iff {x y : pgame} : -y < -x ↔ x < y := | |
by rw [lt_iff_le_and_lf, lt_iff_le_and_lf, neg_le_neg_iff, neg_lf_neg_iff] | |
@[simp] theorem neg_equiv_neg_iff {x y : pgame} : -x ≈ -y ↔ x ≈ y := | |
by rw [equiv, equiv, neg_le_neg_iff, neg_le_neg_iff, and.comm] | |
@[simp] theorem neg_fuzzy_neg_iff {x y : pgame} : -x ∥ -y ↔ x ∥ y := | |
by rw [fuzzy, fuzzy, neg_lf_neg_iff, neg_lf_neg_iff, and.comm] | |
theorem neg_le_iff {x y : pgame} : -y ≤ x ↔ -x ≤ y := | |
by rw [←neg_neg x, neg_le_neg_iff, neg_neg] | |
theorem neg_lf_iff {x y : pgame} : -y ⧏ x ↔ -x ⧏ y := | |
by rw [←neg_neg x, neg_lf_neg_iff, neg_neg] | |
theorem neg_lt_iff {x y : pgame} : -y < x ↔ -x < y := | |
by rw [←neg_neg x, neg_lt_neg_iff, neg_neg] | |
theorem neg_equiv_iff {x y : pgame} : -x ≈ y ↔ x ≈ -y := | |
by rw [←neg_neg y, neg_equiv_neg_iff, neg_neg] | |
theorem neg_fuzzy_iff {x y : pgame} : -x ∥ y ↔ x ∥ -y := | |
by rw [←neg_neg y, neg_fuzzy_neg_iff, neg_neg] | |
theorem le_neg_iff {x y : pgame} : y ≤ -x ↔ x ≤ -y := | |
by rw [←neg_neg x, neg_le_neg_iff, neg_neg] | |
theorem lf_neg_iff {x y : pgame} : y ⧏ -x ↔ x ⧏ -y := | |
by rw [←neg_neg x, neg_lf_neg_iff, neg_neg] | |
theorem lt_neg_iff {x y : pgame} : y < -x ↔ x < -y := | |
by rw [←neg_neg x, neg_lt_neg_iff, neg_neg] | |
@[simp] theorem neg_le_zero_iff {x : pgame} : -x ≤ 0 ↔ 0 ≤ x := | |
by rw [neg_le_iff, pgame.neg_zero] | |
@[simp] theorem zero_le_neg_iff {x : pgame} : 0 ≤ -x ↔ x ≤ 0 := | |
by rw [le_neg_iff, pgame.neg_zero] | |
@[simp] theorem neg_lf_zero_iff {x : pgame} : -x ⧏ 0 ↔ 0 ⧏ x := | |
by rw [neg_lf_iff, pgame.neg_zero] | |
@[simp] theorem zero_lf_neg_iff {x : pgame} : 0 ⧏ -x ↔ x ⧏ 0 := | |
by rw [lf_neg_iff, pgame.neg_zero] | |
@[simp] theorem neg_lt_zero_iff {x : pgame} : -x < 0 ↔ 0 < x := | |
by rw [neg_lt_iff, pgame.neg_zero] | |
@[simp] theorem zero_lt_neg_iff {x : pgame} : 0 < -x ↔ x < 0 := | |
by rw [lt_neg_iff, pgame.neg_zero] | |
@[simp] theorem neg_equiv_zero_iff {x : pgame} : -x ≈ 0 ↔ x ≈ 0 := | |
by rw [neg_equiv_iff, pgame.neg_zero] | |
@[simp] theorem neg_fuzzy_zero_iff {x : pgame} : -x ∥ 0 ↔ x ∥ 0 := | |
by rw [neg_fuzzy_iff, pgame.neg_zero] | |
@[simp] theorem zero_equiv_neg_iff {x : pgame} : 0 ≈ -x ↔ 0 ≈ x := | |
by rw [←neg_equiv_iff, pgame.neg_zero] | |
@[simp] theorem zero_fuzzy_neg_iff {x : pgame} : 0 ∥ -x ↔ 0 ∥ x := | |
by rw [←neg_fuzzy_iff, pgame.neg_zero] | |
/-! ### Addition and subtraction -/ | |
/-- The sum of `x = {xL | xR}` and `y = {yL | yR}` is `{xL + y, x + yL | xR + y, x + yR}`. -/ | |
instance : has_add pgame.{u} := ⟨λ x y, begin | |
induction x with xl xr xL xR IHxl IHxr generalizing y, | |
induction y with yl yr yL yR IHyl IHyr, | |
have y := mk yl yr yL yR, | |
refine ⟨xl ⊕ yl, xr ⊕ yr, sum.rec _ _, sum.rec _ _⟩, | |
{ exact λ i, IHxl i y }, | |
{ exact IHyl }, | |
{ exact λ i, IHxr i y }, | |
{ exact IHyr } | |
end⟩ | |
/-- The pre-game `((0+1)+⋯)+1`. -/ | |
instance : has_nat_cast pgame := ⟨nat.unary_cast⟩ | |
@[simp] protected theorem nat_succ (n : ℕ) : ((n + 1 : ℕ) : pgame) = n + 1 := rfl | |
instance is_empty_left_moves_add (x y : pgame.{u}) | |
[is_empty x.left_moves] [is_empty y.left_moves] : is_empty (x + y).left_moves := | |
begin | |
unfreezingI { cases x, cases y }, | |
apply is_empty_sum.2 ⟨_, _⟩, | |
assumption' | |
end | |
instance is_empty_right_moves_add (x y : pgame.{u}) | |
[is_empty x.right_moves] [is_empty y.right_moves] : is_empty (x + y).right_moves := | |
begin | |
unfreezingI { cases x, cases y }, | |
apply is_empty_sum.2 ⟨_, _⟩, | |
assumption' | |
end | |
/-- `x + 0` has exactly the same moves as `x`. -/ | |
def add_zero_relabelling : Π (x : pgame.{u}), x + 0 ≡r x | |
| ⟨xl, xr, xL, xR⟩ := | |
begin | |
refine ⟨equiv.sum_empty xl pempty, equiv.sum_empty xr pempty, _, _⟩; | |
rintro (⟨i⟩|⟨⟨⟩⟩); | |
apply add_zero_relabelling | |
end | |
/-- `x + 0` is equivalent to `x`. -/ | |
lemma add_zero_equiv (x : pgame.{u}) : x + 0 ≈ x := | |
(add_zero_relabelling x).equiv | |
/-- `0 + x` has exactly the same moves as `x`. -/ | |
def zero_add_relabelling : Π (x : pgame.{u}), 0 + x ≡r x | |
| ⟨xl, xr, xL, xR⟩ := | |
begin | |
refine ⟨equiv.empty_sum pempty xl, equiv.empty_sum pempty xr, _, _⟩; | |
rintro (⟨⟨⟩⟩|⟨i⟩); | |
apply zero_add_relabelling | |
end | |
/-- `0 + x` is equivalent to `x`. -/ | |
lemma zero_add_equiv (x : pgame.{u}) : 0 + x ≈ x := | |
(zero_add_relabelling x).equiv | |
theorem left_moves_add : ∀ (x y : pgame.{u}), | |
(x + y).left_moves = (x.left_moves ⊕ y.left_moves) | |
| ⟨_, _, _, _⟩ ⟨_, _, _, _⟩ := rfl | |
theorem right_moves_add : ∀ (x y : pgame.{u}), | |
(x + y).right_moves = (x.right_moves ⊕ y.right_moves) | |
| ⟨_, _, _, _⟩ ⟨_, _, _, _⟩ := rfl | |
/-- Converts a left move for `x` or `y` into a left move for `x + y` and vice versa. | |
Even though these types are the same (not definitionally so), this is the preferred way to convert | |
between them. -/ | |
def to_left_moves_add {x y : pgame} : | |
x.left_moves ⊕ y.left_moves ≃ (x + y).left_moves := | |
equiv.cast (left_moves_add x y).symm | |
/-- Converts a right move for `x` or `y` into a right move for `x + y` and vice versa. | |
Even though these types are the same (not definitionally so), this is the preferred way to convert | |
between them. -/ | |
def to_right_moves_add {x y : pgame} : | |
x.right_moves ⊕ y.right_moves ≃ (x + y).right_moves := | |
equiv.cast (right_moves_add x y).symm | |
@[simp] lemma mk_add_move_left_inl {xl xr yl yr} {xL xR yL yR} {i} : | |
(mk xl xr xL xR + mk yl yr yL yR).move_left (sum.inl i) = | |
(mk xl xr xL xR).move_left i + (mk yl yr yL yR) := | |
rfl | |
@[simp] lemma add_move_left_inl {x : pgame} (y : pgame) (i) : | |
(x + y).move_left (to_left_moves_add (sum.inl i)) = x.move_left i + y := | |
by { cases x, cases y, refl } | |
@[simp] lemma mk_add_move_right_inl {xl xr yl yr} {xL xR yL yR} {i} : | |
(mk xl xr xL xR + mk yl yr yL yR).move_right (sum.inl i) = | |
(mk xl xr xL xR).move_right i + (mk yl yr yL yR) := | |
rfl | |
@[simp] lemma add_move_right_inl {x : pgame} (y : pgame) (i) : | |
(x + y).move_right (to_right_moves_add (sum.inl i)) = x.move_right i + y := | |
by { cases x, cases y, refl } | |
@[simp] lemma mk_add_move_left_inr {xl xr yl yr} {xL xR yL yR} {i} : | |
(mk xl xr xL xR + mk yl yr yL yR).move_left (sum.inr i) = | |
(mk xl xr xL xR) + (mk yl yr yL yR).move_left i := | |
rfl | |
@[simp] lemma add_move_left_inr (x : pgame) {y : pgame} (i) : | |
(x + y).move_left (to_left_moves_add (sum.inr i)) = x + y.move_left i := | |
by { cases x, cases y, refl } | |
@[simp] lemma mk_add_move_right_inr {xl xr yl yr} {xL xR yL yR} {i} : | |
(mk xl xr xL xR + mk yl yr yL yR).move_right (sum.inr i) = | |
(mk xl xr xL xR) + (mk yl yr yL yR).move_right i := | |
rfl | |
@[simp] lemma add_move_right_inr (x : pgame) {y : pgame} (i) : | |
(x + y).move_right (to_right_moves_add (sum.inr i)) = x + y.move_right i := | |
by { cases x, cases y, refl } | |
lemma left_moves_add_cases {x y : pgame} (k) {P : (x + y).left_moves → Prop} | |
(hl : ∀ i, P $ to_left_moves_add (sum.inl i)) | |
(hr : ∀ i, P $ to_left_moves_add (sum.inr i)) : P k := | |
begin | |
rw ←to_left_moves_add.apply_symm_apply k, | |
cases to_left_moves_add.symm k with i i, | |
{ exact hl i }, | |
{ exact hr i } | |
end | |
lemma right_moves_add_cases {x y : pgame} (k) {P : (x + y).right_moves → Prop} | |
(hl : ∀ j, P $ to_right_moves_add (sum.inl j)) | |
(hr : ∀ j, P $ to_right_moves_add (sum.inr j)) : P k := | |
begin | |
rw ←to_right_moves_add.apply_symm_apply k, | |
cases to_right_moves_add.symm k with i i, | |
{ exact hl i }, | |
{ exact hr i } | |
end | |
instance is_empty_nat_right_moves : ∀ n : ℕ, is_empty (right_moves n) | |
| 0 := pempty.is_empty | |
| (n + 1) := begin | |
haveI := is_empty_nat_right_moves n, | |
rw [pgame.nat_succ, right_moves_add], | |
apply_instance | |
end | |
/-- If `w` has the same moves as `x` and `y` has the same moves as `z`, | |
then `w + y` has the same moves as `x + z`. -/ | |
def relabelling.add_congr : ∀ {w x y z : pgame.{u}}, w ≡r x → y ≡r z → w + y ≡r x + z | |
| ⟨wl, wr, wL, wR⟩ ⟨xl, xr, xL, xR⟩ ⟨yl, yr, yL, yR⟩ ⟨zl, zr, zL, zR⟩ | |
⟨L₁, R₁, hL₁, hR₁⟩ ⟨L₂, R₂, hL₂, hR₂⟩ := | |
begin | |
let Hwx : ⟨wl, wr, wL, wR⟩ ≡r ⟨xl, xr, xL, xR⟩ := ⟨L₁, R₁, hL₁, hR₁⟩, | |
let Hyz : ⟨yl, yr, yL, yR⟩ ≡r ⟨zl, zr, zL, zR⟩ := ⟨L₂, R₂, hL₂, hR₂⟩, | |
refine ⟨equiv.sum_congr L₁ L₂, equiv.sum_congr R₁ R₂, _, _⟩; | |
rintro (i|j), | |
{ exact (hL₁ i).add_congr Hyz }, | |
{ exact Hwx.add_congr (hL₂ j) }, | |
{ exact (hR₁ i).add_congr Hyz }, | |
{ exact Hwx.add_congr (hR₂ j) } | |
end | |
using_well_founded { dec_tac := pgame_wf_tac } | |
instance : has_sub pgame := ⟨λ x y, x + -y⟩ | |
@[simp] theorem sub_zero (x : pgame) : x - 0 = x + 0 := | |
show x + -0 = x + 0, by rw pgame.neg_zero | |
/-- If `w` has the same moves as `x` and `y` has the same moves as `z`, | |
then `w - y` has the same moves as `x - z`. -/ | |
def relabelling.sub_congr {w x y z : pgame} (h₁ : w ≡r x) (h₂ : y ≡r z) : w - y ≡r x - z := | |
h₁.add_congr h₂.neg_congr | |
/-- `-(x + y)` has exactly the same moves as `-x + -y`. -/ | |
def neg_add_relabelling : Π (x y : pgame), -(x + y) ≡r -x + -y | |
| ⟨xl, xr, xL, xR⟩ ⟨yl, yr, yL, yR⟩ := | |
begin | |
refine ⟨equiv.refl _, equiv.refl _, _, _⟩, | |
all_goals { | |
exact λ j, sum.cases_on j | |
(λ j, neg_add_relabelling _ _) | |
(λ j, neg_add_relabelling ⟨xl, xr, xL, xR⟩ _) } | |
end | |
using_well_founded { dec_tac := pgame_wf_tac } | |
theorem neg_add_le {x y : pgame} : -(x + y) ≤ -x + -y := | |
(neg_add_relabelling x y).le | |
/-- `x + y` has exactly the same moves as `y + x`. -/ | |
def add_comm_relabelling : Π (x y : pgame.{u}), x + y ≡r y + x | |
| (mk xl xr xL xR) (mk yl yr yL yR) := | |
begin | |
refine ⟨equiv.sum_comm _ _, equiv.sum_comm _ _, _, _⟩; | |
rintros (_|_); | |
{ dsimp [left_moves_add, right_moves_add], apply add_comm_relabelling } | |
end | |
using_well_founded { dec_tac := pgame_wf_tac } | |
theorem add_comm_le {x y : pgame} : x + y ≤ y + x := | |
(add_comm_relabelling x y).le | |
theorem add_comm_equiv {x y : pgame} : x + y ≈ y + x := | |
(add_comm_relabelling x y).equiv | |
/-- `(x + y) + z` has exactly the same moves as `x + (y + z)`. -/ | |
def add_assoc_relabelling : Π (x y z : pgame.{u}), x + y + z ≡r x + (y + z) | |
| ⟨xl, xr, xL, xR⟩ ⟨yl, yr, yL, yR⟩ ⟨zl, zr, zL, zR⟩ := | |
begin | |
refine ⟨equiv.sum_assoc _ _ _, equiv.sum_assoc _ _ _, _, _⟩, | |
all_goals | |
{ rintro (⟨i|i⟩|i) <|> rintro (j|⟨j|j⟩), | |
{ apply add_assoc_relabelling }, | |
{ apply add_assoc_relabelling ⟨xl, xr, xL, xR⟩ }, | |
{ apply add_assoc_relabelling ⟨xl, xr, xL, xR⟩ ⟨yl, yr, yL, yR⟩ } } | |
end | |
using_well_founded { dec_tac := pgame_wf_tac } | |
theorem add_assoc_equiv {x y z : pgame} : (x + y) + z ≈ x + (y + z) := | |
(add_assoc_relabelling x y z).equiv | |
theorem add_left_neg_le_zero : ∀ (x : pgame), -x + x ≤ 0 | |
| ⟨xl, xr, xL, xR⟩ := | |
le_zero.2 $ λ i, begin | |
cases i, | |
{ -- If Left played in -x, Right responds with the same move in x. | |
refine ⟨@to_right_moves_add _ ⟨_, _, _, _⟩ (sum.inr i), _⟩, | |
convert @add_left_neg_le_zero (xR i), | |
apply add_move_right_inr }, | |
{ -- If Left in x, Right responds with the same move in -x. | |
dsimp, | |
refine ⟨@to_right_moves_add ⟨_, _, _, _⟩ _ (sum.inl i), _⟩, | |
convert @add_left_neg_le_zero (xL i), | |
apply add_move_right_inl } | |
end | |
theorem zero_le_add_left_neg (x : pgame) : 0 ≤ -x + x := | |
begin | |
rw [←neg_le_neg_iff, pgame.neg_zero], | |
exact neg_add_le.trans (add_left_neg_le_zero _) | |
end | |
theorem add_left_neg_equiv (x : pgame) : -x + x ≈ 0 := | |
⟨add_left_neg_le_zero x, zero_le_add_left_neg x⟩ | |
theorem add_right_neg_le_zero (x : pgame) : x + -x ≤ 0 := | |
add_comm_le.trans (add_left_neg_le_zero x) | |
theorem zero_le_add_right_neg (x : pgame) : 0 ≤ x + -x := | |
(zero_le_add_left_neg x).trans add_comm_le | |
theorem add_right_neg_equiv (x : pgame) : x + -x ≈ 0 := | |
⟨add_right_neg_le_zero x, zero_le_add_right_neg x⟩ | |
theorem sub_self_equiv : ∀ x, x - x ≈ 0 := | |
add_right_neg_equiv | |
private lemma add_le_add_right' : ∀ {x y z : pgame} (h : x ≤ y), x + z ≤ y + z | |
| (mk xl xr xL xR) (mk yl yr yL yR) (mk zl zr zL zR) := | |
λ h, begin | |
refine le_def.2 ⟨λ i, _, λ i, _⟩; | |
cases i, | |
{ rw le_def at h, | |
cases h, | |
rcases h_left i with ⟨i', ih⟩ | ⟨j, jh⟩, | |
{ exact or.inl ⟨to_left_moves_add (sum.inl i'), add_le_add_right' ih⟩ }, | |
{ refine or.inr ⟨to_right_moves_add (sum.inl j), _⟩, | |
convert add_le_add_right' jh, | |
apply add_move_right_inl } }, | |
{ exact or.inl ⟨@to_left_moves_add _ ⟨_, _, _, _⟩ (sum.inr i), add_le_add_right' h⟩ }, | |
{ rw le_def at h, | |
cases h, | |
rcases h_right i with ⟨i, ih⟩ | ⟨j', jh⟩, | |
{ refine or.inl ⟨to_left_moves_add (sum.inl i), _⟩, | |
convert add_le_add_right' ih, | |
apply add_move_left_inl }, | |
{ exact or.inr ⟨to_right_moves_add (sum.inl j'), add_le_add_right' jh⟩ } }, | |
{ exact or.inr ⟨@to_right_moves_add _ ⟨_, _, _, _⟩ (sum.inr i), add_le_add_right' h⟩ } | |
end | |
using_well_founded { dec_tac := pgame_wf_tac } | |
instance covariant_class_swap_add_le : covariant_class pgame pgame (swap (+)) (≤) := | |
⟨λ x y z, add_le_add_right'⟩ | |
instance covariant_class_add_le : covariant_class pgame pgame (+) (≤) := | |
⟨λ x y z h, (add_comm_le.trans (add_le_add_right h x)).trans add_comm_le⟩ | |
theorem add_lf_add_right {y z : pgame} (h : y ⧏ z) (x) : y + x ⧏ z + x := | |
suffices z + x ≤ y + x → z ≤ y, by { rw ←pgame.not_le at ⊢ h, exact mt this h }, λ w, | |
calc z ≤ z + 0 : (add_zero_relabelling _).symm.le | |
... ≤ z + (x + -x) : add_le_add_left (zero_le_add_right_neg x) _ | |
... ≤ z + x + -x : (add_assoc_relabelling _ _ _).symm.le | |
... ≤ y + x + -x : add_le_add_right w _ | |
... ≤ y + (x + -x) : (add_assoc_relabelling _ _ _).le | |
... ≤ y + 0 : add_le_add_left (add_right_neg_le_zero x) _ | |
... ≤ y : (add_zero_relabelling _).le | |
theorem add_lf_add_left {y z : pgame} (h : y ⧏ z) (x) : x + y ⧏ x + z := | |
by { rw lf_congr add_comm_equiv add_comm_equiv, apply add_lf_add_right h } | |
instance covariant_class_swap_add_lt : covariant_class pgame pgame (swap (+)) (<) := | |
⟨λ x y z h, ⟨add_le_add_right h.1 x, add_lf_add_right h.2 x⟩⟩ | |
instance covariant_class_add_lt : covariant_class pgame pgame (+) (<) := | |
⟨λ x y z h, ⟨add_le_add_left h.1 x, add_lf_add_left h.2 x⟩⟩ | |
theorem add_lf_add_of_lf_of_le {w x y z : pgame} (hwx : w ⧏ x) (hyz : y ≤ z) : w + y ⧏ x + z := | |
lf_of_lf_of_le (add_lf_add_right hwx y) (add_le_add_left hyz x) | |
theorem add_lf_add_of_le_of_lf {w x y z : pgame} (hwx : w ≤ x) (hyz : y ⧏ z) : w + y ⧏ x + z := | |
lf_of_le_of_lf (add_le_add_right hwx y) (add_lf_add_left hyz x) | |
theorem add_congr {w x y z : pgame} (h₁ : w ≈ x) (h₂ : y ≈ z) : w + y ≈ x + z := | |
⟨(add_le_add_left h₂.1 w).trans (add_le_add_right h₁.1 z), | |
(add_le_add_left h₂.2 x).trans (add_le_add_right h₁.2 y)⟩ | |
theorem add_congr_left {x y z : pgame} (h : x ≈ y) : x + z ≈ y + z := | |
add_congr h equiv_rfl | |
theorem add_congr_right {x y z : pgame} : y ≈ z → x + y ≈ x + z := | |
add_congr equiv_rfl | |
theorem sub_congr {w x y z : pgame} (h₁ : w ≈ x) (h₂ : y ≈ z) : w - y ≈ x - z := | |
add_congr h₁ (neg_equiv_neg_iff.2 h₂) | |
theorem sub_congr_left {x y z : pgame} (h : x ≈ y) : x - z ≈ y - z := | |
sub_congr h equiv_rfl | |
theorem sub_congr_right {x y z : pgame} : y ≈ z → x - y ≈ x - z := | |
sub_congr equiv_rfl | |
theorem le_iff_sub_nonneg {x y : pgame} : x ≤ y ↔ 0 ≤ y - x := | |
⟨λ h, (zero_le_add_right_neg x).trans (add_le_add_right h _), | |
λ h, | |
calc x ≤ 0 + x : (zero_add_relabelling x).symm.le | |
... ≤ y - x + x : add_le_add_right h _ | |
... ≤ y + (-x + x) : (add_assoc_relabelling _ _ _).le | |
... ≤ y + 0 : add_le_add_left (add_left_neg_le_zero x) _ | |
... ≤ y : (add_zero_relabelling y).le⟩ | |
theorem lf_iff_sub_zero_lf {x y : pgame} : x ⧏ y ↔ 0 ⧏ y - x := | |
⟨λ h, (zero_le_add_right_neg x).trans_lf (add_lf_add_right h _), | |
λ h, | |
calc x ≤ 0 + x : (zero_add_relabelling x).symm.le | |
... ⧏ y - x + x : add_lf_add_right h _ | |
... ≤ y + (-x + x) : (add_assoc_relabelling _ _ _).le | |
... ≤ y + 0 : add_le_add_left (add_left_neg_le_zero x) _ | |
... ≤ y : (add_zero_relabelling y).le⟩ | |
theorem lt_iff_sub_pos {x y : pgame} : x < y ↔ 0 < y - x := | |
⟨λ h, lt_of_le_of_lt (zero_le_add_right_neg x) (add_lt_add_right h _), | |
λ h, | |
calc x ≤ 0 + x : (zero_add_relabelling x).symm.le | |
... < y - x + x : add_lt_add_right h _ | |
... ≤ y + (-x + x) : (add_assoc_relabelling _ _ _).le | |
... ≤ y + 0 : add_le_add_left (add_left_neg_le_zero x) _ | |
... ≤ y : (add_zero_relabelling y).le⟩ | |
/-! ### Special pre-games -/ | |
/-- The pre-game `star`, which is fuzzy with zero. -/ | |
def star : pgame.{u} := ⟨punit, punit, λ _, 0, λ _, 0⟩ | |
@[simp] theorem star_left_moves : star.left_moves = punit := rfl | |
@[simp] theorem star_right_moves : star.right_moves = punit := rfl | |
@[simp] theorem star_move_left (x) : star.move_left x = 0 := rfl | |
@[simp] theorem star_move_right (x) : star.move_right x = 0 := rfl | |
instance unique_star_left_moves : unique star.left_moves := punit.unique | |
instance unique_star_right_moves : unique star.right_moves := punit.unique | |
theorem star_fuzzy_zero : star ∥ 0 := | |
⟨by { rw lf_zero, use default, rintros ⟨⟩ }, by { rw zero_lf, use default, rintros ⟨⟩ }⟩ | |
@[simp] theorem neg_star : -star = star := | |
by simp [star] | |
@[simp] theorem zero_lt_one : (0 : pgame) < 1 := | |
lt_of_le_of_lf (zero_le_of_is_empty_right_moves 1) (zero_lf_le.2 ⟨default, le_rfl⟩) | |
instance : zero_le_one_class pgame := ⟨zero_lt_one.le⟩ | |
@[simp] theorem zero_lf_one : (0 : pgame) ⧏ 1 := | |
zero_lt_one.lf | |
end pgame | |