Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
21.9 kB
/-
Copyright (c) 2018 Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Robert Y. Lewis, Chris Hughes
-/
import algebra.associated
import algebra.big_operators.basic
import ring_theory.valuation.basic
/-!
# Multiplicity of a divisor
For a commutative monoid, this file introduces the notion of multiplicity of a divisor and proves
several basic results on it.
## Main definitions
* `multiplicity a b`: for two elements `a` and `b` of a commutative monoid returns the largest
number `n` such that `a ^ n ∣ b` or infinity, written `⊤`, if `a ^ n ∣ b` for all natural numbers
`n`.
* `multiplicity.finite a b`: a predicate denoting that the multiplicity of `a` in `b` is finite.
-/
variables {α : Type*}
open nat part
open_locale big_operators
/-- `multiplicity a b` returns the largest natural number `n` such that
`a ^ n ∣ b`, as an `part_enat` or natural with infinity. If `∀ n, a ^ n ∣ b`,
then it returns `⊤`-/
def multiplicity [comm_monoid α] [decidable_rel ((∣) : α → α → Prop)] (a b : α) : part_enat :=
part_enat.find $ λ n, ¬a ^ (n + 1) ∣ b
namespace multiplicity
section comm_monoid
variables [comm_monoid α]
/-- `multiplicity.finite a b` indicates that the multiplicity of `a` in `b` is finite. -/
@[reducible] def finite (a b : α) : Prop := ∃ n : ℕ, ¬a ^ (n + 1) ∣ b
lemma finite_iff_dom [decidable_rel ((∣) : α → α → Prop)] {a b : α} :
finite a b ↔ (multiplicity a b).dom := iff.rfl
lemma finite_def {a b : α} : finite a b ↔ ∃ n : ℕ, ¬a ^ (n + 1) ∣ b := iff.rfl
@[norm_cast]
theorem int.coe_nat_multiplicity (a b : ℕ) :
multiplicity (a : ℤ) (b : ℤ) = multiplicity a b :=
begin
apply part.ext',
{ repeat { rw [← finite_iff_dom, finite_def] },
norm_cast },
{ intros h1 h2,
apply _root_.le_antisymm; { apply nat.find_mono, norm_cast, simp } }
end
lemma not_finite_iff_forall {a b : α} : (¬ finite a b) ↔ ∀ n : ℕ, a ^ n ∣ b :=
⟨λ h n, nat.cases_on n (by { rw pow_zero, exact one_dvd _ }) (by simpa [finite, not_not] using h),
by simp [finite, multiplicity, not_not]; tauto⟩
lemma not_unit_of_finite {a b : α} (h : finite a b) : ¬is_unit a :=
let ⟨n, hn⟩ := h in mt (is_unit_iff_forall_dvd.1 ∘ is_unit.pow (n + 1)) $
λ h, hn (h b)
lemma finite_of_finite_mul_left {a b c : α} : finite a (b * c) → finite a c :=
λ ⟨n, hn⟩, ⟨n, λ h, hn (h.trans (by simp [mul_pow]))⟩
lemma finite_of_finite_mul_right {a b c : α} : finite a (b * c) → finite a b :=
by rw mul_comm; exact finite_of_finite_mul_left
variable [decidable_rel ((∣) : α → α → Prop)]
lemma pow_dvd_of_le_multiplicity {a b : α} {k : ℕ} :
(k : part_enat) ≤ multiplicity a b → a ^ k ∣ b :=
by { rw ← part_enat.some_eq_coe, exact
nat.cases_on k (λ _, by { rw pow_zero, exact one_dvd _ })
(λ k ⟨h₁, h₂⟩, by_contradiction (λ hk, (nat.find_min _ (lt_of_succ_le (h₂ ⟨k, hk⟩)) hk))) }
lemma pow_multiplicity_dvd {a b : α} (h : finite a b) : a ^ get (multiplicity a b) h ∣ b :=
pow_dvd_of_le_multiplicity (by rw part_enat.coe_get)
lemma is_greatest {a b : α} {m : ℕ} (hm : multiplicity a b < m) : ¬a ^ m ∣ b :=
λ h, by rw [part_enat.lt_coe_iff] at hm; exact nat.find_spec hm.fst ((pow_dvd_pow _ hm.snd).trans h)
lemma is_greatest' {a b : α} {m : ℕ} (h : finite a b) (hm : get (multiplicity a b) h < m) :
¬a ^ m ∣ b :=
is_greatest (by rwa [← part_enat.coe_lt_coe, part_enat.coe_get] at hm)
lemma pos_of_dvd {a b : α} (hfin : finite a b) (hdiv : a ∣ b) : 0 < (multiplicity a b).get hfin :=
begin
refine zero_lt_iff.2 (λ h, _),
simpa [hdiv] using (is_greatest' hfin (lt_one_iff.mpr h)),
end
lemma unique {a b : α} {k : ℕ} (hk : a ^ k ∣ b) (hsucc : ¬a ^ (k + 1) ∣ b) :
(k : part_enat) = multiplicity a b :=
le_antisymm (le_of_not_gt (λ hk', is_greatest hk' hk)) $
have finite a b, from ⟨k, hsucc⟩,
by { rw [part_enat.le_coe_iff], exact ⟨this, nat.find_min' _ hsucc⟩ }
lemma unique' {a b : α} {k : ℕ} (hk : a ^ k ∣ b) (hsucc : ¬ a ^ (k + 1) ∣ b) :
k = get (multiplicity a b) ⟨k, hsucc⟩ :=
by rw [← part_enat.coe_inj, part_enat.coe_get, unique hk hsucc]
lemma le_multiplicity_of_pow_dvd {a b : α}
{k : ℕ} (hk : a ^ k ∣ b) : (k : part_enat) ≤ multiplicity a b :=
le_of_not_gt $ λ hk', is_greatest hk' hk
lemma pow_dvd_iff_le_multiplicity {a b : α}
{k : ℕ} : a ^ k ∣ b ↔ (k : part_enat) ≤ multiplicity a b :=
⟨le_multiplicity_of_pow_dvd, pow_dvd_of_le_multiplicity⟩
lemma multiplicity_lt_iff_neg_dvd {a b : α} {k : ℕ} :
multiplicity a b < (k : part_enat) ↔ ¬ a ^ k ∣ b :=
by { rw [pow_dvd_iff_le_multiplicity, not_le] }
lemma eq_coe_iff {a b : α} {n : ℕ} :
multiplicity a b = (n : part_enat) ↔ a ^ n ∣ b ∧ ¬a ^ (n + 1) ∣ b :=
begin
rw [← part_enat.some_eq_coe],
exact ⟨λ h, let ⟨h₁, h₂⟩ := eq_some_iff.1 h in
h₂ ▸ ⟨pow_multiplicity_dvd _, is_greatest
(by { rw [part_enat.lt_coe_iff], exact ⟨h₁, lt_succ_self _⟩ })⟩,
λ h, eq_some_iff.2 ⟨⟨n, h.2⟩, eq.symm $ unique' h.1 h.2⟩⟩
end
lemma eq_top_iff {a b : α} :
multiplicity a b = ⊤ ↔ ∀ n : ℕ, a ^ n ∣ b :=
(part_enat.find_eq_top_iff _).trans $
by { simp only [not_not],
exact ⟨λ h n, nat.cases_on n (by { rw pow_zero, exact one_dvd _}) (λ n, h _), λ h n, h _⟩ }
@[simp] lemma is_unit_left {a : α} (b : α) (ha : is_unit a) : multiplicity a b = ⊤ :=
eq_top_iff.2 (λ _, is_unit_iff_forall_dvd.1 (ha.pow _) _)
lemma is_unit_right {a b : α} (ha : ¬is_unit a) (hb : is_unit b) :
multiplicity a b = 0 :=
eq_coe_iff.2 ⟨show a ^ 0 ∣ b, by simp only [pow_zero, one_dvd],
by { rw pow_one, exact λ h, mt (is_unit_of_dvd_unit h) ha hb }⟩
@[simp] lemma one_left (b : α) : multiplicity 1 b = ⊤ := is_unit_left b is_unit_one
lemma one_right {a : α} (ha : ¬is_unit a) : multiplicity a 1 = 0 := is_unit_right ha is_unit_one
@[simp] lemma get_one_right {a : α} (ha : finite a 1) : get (multiplicity a 1) ha = 0 :=
begin
rw [part_enat.get_eq_iff_eq_coe, eq_coe_iff, pow_zero],
simpa [is_unit_iff_dvd_one.symm] using not_unit_of_finite ha,
end
@[simp] lemma unit_left (a : α) (u : αˣ) : multiplicity (u : α) a = ⊤ :=
is_unit_left a u.is_unit
lemma unit_right {a : α} (ha : ¬is_unit a) (u : αˣ) : multiplicity a u = 0 :=
is_unit_right ha u.is_unit
lemma multiplicity_eq_zero_of_not_dvd {a b : α} (ha : ¬a ∣ b) : multiplicity a b = 0 :=
by { rw [← nat.cast_zero, eq_coe_iff], simpa }
lemma eq_top_iff_not_finite {a b : α} : multiplicity a b = ⊤ ↔ ¬ finite a b :=
part.eq_none_iff'
lemma ne_top_iff_finite {a b : α} : multiplicity a b ≠ ⊤ ↔ finite a b :=
by rw [ne.def, eq_top_iff_not_finite, not_not]
lemma lt_top_iff_finite {a b : α} : multiplicity a b < ⊤ ↔ finite a b :=
by rw [lt_top_iff_ne_top, ne_top_iff_finite]
lemma exists_eq_pow_mul_and_not_dvd {a b : α} (hfin : finite a b) :
∃ (c : α), b = a ^ ((multiplicity a b).get hfin) * c ∧ ¬ a ∣ c :=
begin
obtain ⟨c, hc⟩ := multiplicity.pow_multiplicity_dvd hfin,
refine ⟨c, hc, _⟩,
rintro ⟨k, hk⟩,
rw [hk, ← mul_assoc, ← pow_succ'] at hc,
have h₁ : a ^ ((multiplicity a b).get hfin + 1) ∣ b := ⟨k, hc⟩,
exact (multiplicity.eq_coe_iff.1 (by simp)).2 h₁,
end
open_locale classical
lemma multiplicity_le_multiplicity_iff {a b c d : α} : multiplicity a b ≤ multiplicity c d ↔
(∀ n : ℕ, a ^ n ∣ b → c ^ n ∣ d) :=
⟨λ h n hab, (pow_dvd_of_le_multiplicity (le_trans (le_multiplicity_of_pow_dvd hab) h)),
λ h, if hab : finite a b
then by rw [← part_enat.coe_get (finite_iff_dom.1 hab)];
exact le_multiplicity_of_pow_dvd (h _ (pow_multiplicity_dvd _))
else
have ∀ n : ℕ, c ^ n ∣ d, from λ n, h n (not_finite_iff_forall.1 hab _),
by rw [eq_top_iff_not_finite.2 hab, eq_top_iff_not_finite.2
(not_finite_iff_forall.2 this)]⟩
lemma multiplicity_le_multiplicity_of_dvd_left {a b c : α} (hdvd : a ∣ b) :
multiplicity b c ≤ multiplicity a c :=
multiplicity_le_multiplicity_iff.2 $ λ n h, (pow_dvd_pow_of_dvd hdvd n).trans h
lemma eq_of_associated_left {a b c : α} (h : associated a b) :
multiplicity b c = multiplicity a c :=
le_antisymm (multiplicity_le_multiplicity_of_dvd_left h.dvd)
(multiplicity_le_multiplicity_of_dvd_left h.symm.dvd)
lemma multiplicity_le_multiplicity_of_dvd_right {a b c : α} (h : b ∣ c) :
multiplicity a b ≤ multiplicity a c :=
multiplicity_le_multiplicity_iff.2 $ λ n hb, hb.trans h
lemma eq_of_associated_right {a b c : α} (h : associated b c) :
multiplicity a b = multiplicity a c :=
le_antisymm (multiplicity_le_multiplicity_of_dvd_right h.dvd)
(multiplicity_le_multiplicity_of_dvd_right h.symm.dvd)
lemma dvd_of_multiplicity_pos {a b : α} (h : (0 : part_enat) < multiplicity a b) : a ∣ b :=
begin
rw ← pow_one a,
apply pow_dvd_of_le_multiplicity,
simpa only [nat.cast_one, part_enat.pos_iff_one_le] using h
end
lemma dvd_iff_multiplicity_pos {a b : α} : (0 : part_enat) < multiplicity a b ↔ a ∣ b :=
⟨dvd_of_multiplicity_pos,
λ hdvd, lt_of_le_of_ne (zero_le _) (λ heq, is_greatest
(show multiplicity a b < ↑1,
by simpa only [heq, nat.cast_zero] using part_enat.coe_lt_coe.mpr zero_lt_one)
(by rwa pow_one a))⟩
lemma finite_nat_iff {a b : ℕ} : finite a b ↔ (a ≠ 10 < b) :=
begin
rw [← not_iff_not, not_finite_iff_forall, not_and_distrib, ne.def,
not_not, not_lt, nat.le_zero_iff],
exact ⟨λ h, or_iff_not_imp_right.2 (λ hb,
have ha : a ≠ 0, from λ ha, by simpa [ha] using h 1,
by_contradiction (λ ha1 : a ≠ 1,
have ha_gt_one : 1 < a, from
lt_of_not_ge (λ ha', by { clear h, revert ha ha1, dec_trivial! }),
not_lt_of_ge (le_of_dvd (nat.pos_of_ne_zero hb) (h b))
(lt_pow_self ha_gt_one b))),
λ h, by cases h; simp *⟩
end
alias dvd_iff_multiplicity_pos ↔ _ _root_.has_dvd.dvd.multiplicity_pos
end comm_monoid
section comm_monoid_with_zero
variable [comm_monoid_with_zero α]
lemma ne_zero_of_finite {a b : α} (h : finite a b) : b ≠ 0 :=
let ⟨n, hn⟩ := h in λ hb, by simpa [hb] using hn
variable [decidable_rel ((∣) : α → α → Prop)]
@[simp] protected lemma zero (a : α) : multiplicity a 0 = ⊤ :=
part.eq_none_iff.2 (λ n ⟨⟨k, hk⟩, _⟩, hk (dvd_zero _))
@[simp] lemma multiplicity_zero_eq_zero_of_ne_zero (a : α) (ha : a ≠ 0) : multiplicity 0 a = 0 :=
begin
apply multiplicity.multiplicity_eq_zero_of_not_dvd,
rwa zero_dvd_iff,
end
lemma multiplicity_mk_eq_multiplicity [decidable_rel ((∣) : associates α → associates α → Prop)]
{a b : α} : multiplicity (associates.mk a) (associates.mk b) = multiplicity a b :=
begin
by_cases h : finite a b,
{ rw ← part_enat.coe_get (finite_iff_dom.mp h),
refine (multiplicity.unique
(show (associates.mk a)^(((multiplicity a b).get h)) ∣ associates.mk b, from _) _).symm ;
rw [← associates.mk_pow, associates.mk_dvd_mk],
{ exact pow_multiplicity_dvd h },
{ exact is_greatest ((part_enat.lt_coe_iff _ _).mpr (exists.intro
(finite_iff_dom.mp h) (nat.lt_succ_self _))) } },
{ suffices : ¬ (finite (associates.mk a) (associates.mk b)),
{ rw [finite_iff_dom, part_enat.not_dom_iff_eq_top] at h this,
rw [h, this] },
refine not_finite_iff_forall.mpr (λ n, by {rw [← associates.mk_pow, associates.mk_dvd_mk],
exact not_finite_iff_forall.mp h n }) }
end
end comm_monoid_with_zero
section comm_semiring
variables [comm_semiring α] [decidable_rel ((∣) : α → α → Prop)]
lemma min_le_multiplicity_add {p a b : α} :
min (multiplicity p a) (multiplicity p b) ≤ multiplicity p (a + b) :=
(le_total (multiplicity p a) (multiplicity p b)).elim
(λ h, by rw [min_eq_left h, multiplicity_le_multiplicity_iff];
exact λ n hn, dvd_add hn (multiplicity_le_multiplicity_iff.1 h n hn))
(λ h, by rw [min_eq_right h, multiplicity_le_multiplicity_iff];
exact λ n hn, dvd_add (multiplicity_le_multiplicity_iff.1 h n hn) hn)
end comm_semiring
section comm_ring
variables [comm_ring α] [decidable_rel ((∣) : α → α → Prop)]
open_locale classical
@[simp] protected lemma neg (a b : α) : multiplicity a (-b) = multiplicity a b :=
part.ext' (by simp only [multiplicity, part_enat.find, dvd_neg])
(λ h₁ h₂, part_enat.coe_inj.1 (by rw [part_enat.coe_get]; exact
eq.symm (unique ((dvd_neg _ _).2 (pow_multiplicity_dvd _))
(mt (dvd_neg _ _).1 (is_greatest' _ (lt_succ_self _))))))
theorem int.nat_abs (a : ℕ) (b : ℤ) : multiplicity a b.nat_abs = multiplicity (a : ℤ) b :=
begin
cases int.nat_abs_eq b with h h; conv_rhs { rw h },
{ rw [int.coe_nat_multiplicity], },
{ rw [multiplicity.neg, int.coe_nat_multiplicity], },
end
lemma multiplicity_add_of_gt {p a b : α} (h : multiplicity p b < multiplicity p a) :
multiplicity p (a + b) = multiplicity p b :=
begin
apply le_antisymm,
{ apply part_enat.le_of_lt_add_one,
cases part_enat.ne_top_iff.mp (part_enat.ne_top_of_lt h) with k hk,
rw [hk], rw_mod_cast [multiplicity_lt_iff_neg_dvd], intro h_dvd,
rw [← dvd_add_iff_right] at h_dvd,
apply multiplicity.is_greatest _ h_dvd, rw [hk], apply_mod_cast nat.lt_succ_self,
rw [pow_dvd_iff_le_multiplicity, nat.cast_add, ← hk, nat.cast_one],
exact part_enat.add_one_le_of_lt h },
{ convert min_le_multiplicity_add, rw [min_eq_right (le_of_lt h)] }
end
lemma multiplicity_sub_of_gt {p a b : α} (h : multiplicity p b < multiplicity p a) :
multiplicity p (a - b) = multiplicity p b :=
by { rw [sub_eq_add_neg, multiplicity_add_of_gt]; rwa [multiplicity.neg] }
lemma multiplicity_add_eq_min {p a b : α} (h : multiplicity p a ≠ multiplicity p b) :
multiplicity p (a + b) = min (multiplicity p a) (multiplicity p b) :=
begin
rcases lt_trichotomy (multiplicity p a) (multiplicity p b) with hab|hab|hab,
{ rw [add_comm, multiplicity_add_of_gt hab, min_eq_left], exact le_of_lt hab },
{ contradiction },
{ rw [multiplicity_add_of_gt hab, min_eq_right], exact le_of_lt hab},
end
end comm_ring
section cancel_comm_monoid_with_zero
variables [cancel_comm_monoid_with_zero α]
lemma finite_mul_aux {p : α} (hp : prime p) : ∀ {n m : ℕ} {a b : α},
¬p ^ (n + 1) ∣ a → ¬p ^ (m + 1) ∣ b → ¬p ^ (n + m + 1) ∣ a * b
| n m := λ a b ha hb ⟨s, hs⟩,
have p ∣ a * b, from ⟨p ^ (n + m) * s,
by simp [hs, pow_add, mul_comm, mul_assoc, mul_left_comm]⟩,
(hp.2.2 a b this).elim
(λ ⟨x, hx⟩, have hn0 : 0 < n,
from nat.pos_of_ne_zero (λ hn0, by clear _fun_match _fun_match; simpa [hx, hn0] using ha),
have wf : (n - 1) < n, from tsub_lt_self hn0 dec_trivial,
have hpx : ¬ p ^ (n - 1 + 1) ∣ x,
from λ ⟨y, hy⟩, ha (hx.symm ▸ ⟨y, mul_right_cancel₀ hp.1
$ by rw [tsub_add_cancel_of_le (succ_le_of_lt hn0)] at hy;
simp [hy, pow_add, mul_comm, mul_assoc, mul_left_comm]⟩),
have 1 ≤ n + m, from le_trans hn0 (nat.le_add_right n m),
finite_mul_aux hpx hb ⟨s, mul_right_cancel₀ hp.1 begin
rw [tsub_add_eq_add_tsub (succ_le_of_lt hn0), tsub_add_cancel_of_le this],
clear _fun_match _fun_match finite_mul_aux,
simp [*, mul_comm, mul_assoc, mul_left_comm, pow_add] at *
end⟩)
(λ ⟨x, hx⟩, have hm0 : 0 < m,
from nat.pos_of_ne_zero (λ hm0, by clear _fun_match _fun_match; simpa [hx, hm0] using hb),
have wf : (m - 1) < m, from tsub_lt_self hm0 dec_trivial,
have hpx : ¬ p ^ (m - 1 + 1) ∣ x,
from λ ⟨y, hy⟩, hb (hx.symm ▸ ⟨y, mul_right_cancel₀ hp.1
$ by rw [tsub_add_cancel_of_le (succ_le_of_lt hm0)] at hy;
simp [hy, pow_add, mul_comm, mul_assoc, mul_left_comm]⟩),
finite_mul_aux ha hpx ⟨s, mul_right_cancel₀ hp.1 begin
rw [add_assoc, tsub_add_cancel_of_le (succ_le_of_lt hm0)],
clear _fun_match _fun_match finite_mul_aux,
simp [*, mul_comm, mul_assoc, mul_left_comm, pow_add] at *
end⟩)
lemma finite_mul {p a b : α} (hp : prime p) : finite p a → finite p b → finite p (a * b) :=
λ ⟨n, hn⟩ ⟨m, hm⟩, ⟨n + m, finite_mul_aux hp hn hm⟩
lemma finite_mul_iff {p a b : α} (hp : prime p) : finite p (a * b) ↔ finite p a ∧ finite p b :=
⟨λ h, ⟨finite_of_finite_mul_right h, finite_of_finite_mul_left h⟩,
λ h, finite_mul hp h.1 h.2
lemma finite_pow {p a : α} (hp : prime p) : Π {k : ℕ} (ha : finite p a), finite p (a ^ k)
| 0 ha := ⟨0, by simp [mt is_unit_iff_dvd_one.2 hp.2.1]⟩
| (k+1) ha := by rw [pow_succ]; exact finite_mul hp ha (finite_pow ha)
variable [decidable_rel ((∣) : α → α → Prop)]
@[simp] lemma multiplicity_self {a : α} (ha : ¬is_unit a) (ha0 : a ≠ 0) :
multiplicity a a = 1 :=
by { rw ← nat.cast_one, exact
eq_coe_iff.2 ⟨by simp, λ ⟨b, hb⟩, ha (is_unit_iff_dvd_one.2
⟨b, mul_left_cancel₀ ha0 $ by { clear _fun_match,
simpa [pow_succ, mul_assoc] using hb }⟩)⟩ }
@[simp] lemma get_multiplicity_self {a : α} (ha : finite a a) :
get (multiplicity a a) ha = 1 :=
part_enat.get_eq_iff_eq_coe.2 (eq_coe_iff.2
⟨by simp, λ ⟨b, hb⟩,
by rw [← mul_one a, pow_add, pow_one, mul_assoc, mul_assoc,
mul_right_inj' (ne_zero_of_finite ha)] at hb;
exact mt is_unit_iff_dvd_one.2 (not_unit_of_finite ha)
⟨b, by clear _fun_match; simp * at *⟩⟩)
protected lemma mul' {p a b : α} (hp : prime p)
(h : (multiplicity p (a * b)).dom) :
get (multiplicity p (a * b)) h =
get (multiplicity p a) ((finite_mul_iff hp).1 h).1 +
get (multiplicity p b) ((finite_mul_iff hp).1 h).2 :=
have hdiva : p ^ get (multiplicity p a) ((finite_mul_iff hp).1 h).1 ∣ a,
from pow_multiplicity_dvd _,
have hdivb : p ^ get (multiplicity p b) ((finite_mul_iff hp).1 h).2 ∣ b,
from pow_multiplicity_dvd _,
have hpoweq : p ^ (get (multiplicity p a) ((finite_mul_iff hp).1 h).1 +
get (multiplicity p b) ((finite_mul_iff hp).1 h).2) =
p ^ get (multiplicity p a) ((finite_mul_iff hp).1 h).1 *
p ^ get (multiplicity p b) ((finite_mul_iff hp).1 h).2,
by simp [pow_add],
have hdiv : p ^ (get (multiplicity p a) ((finite_mul_iff hp).1 h).1 +
get (multiplicity p b) ((finite_mul_iff hp).1 h).2) ∣ a * b,
by rw [hpoweq]; apply mul_dvd_mul; assumption,
have hsucc : ¬p ^ ((get (multiplicity p a) ((finite_mul_iff hp).1 h).1 +
get (multiplicity p b) ((finite_mul_iff hp).1 h).2) + 1) ∣ a * b,
from λ h, by exact
not_or (is_greatest' _ (lt_succ_self _)) (is_greatest' _ (lt_succ_self _))
(_root_.succ_dvd_or_succ_dvd_of_succ_sum_dvd_mul hp hdiva hdivb h),
by rw [← part_enat.coe_inj, part_enat.coe_get, eq_coe_iff];
exact ⟨hdiv, hsucc⟩
open_locale classical
protected lemma mul {p a b : α} (hp : prime p) :
multiplicity p (a * b) = multiplicity p a + multiplicity p b :=
if h : finite p a ∧ finite p b then
by rw [← part_enat.coe_get (finite_iff_dom.1 h.1), ← part_enat.coe_get (finite_iff_dom.1 h.2),
← part_enat.coe_get (finite_iff_dom.1 (finite_mul hp h.1 h.2)),
← nat.cast_add, part_enat.coe_inj, multiplicity.mul' hp]; refl
else begin
rw [eq_top_iff_not_finite.2 (mt (finite_mul_iff hp).1 h)],
cases not_and_distrib.1 h with h h;
simp [eq_top_iff_not_finite.2 h]
end
lemma finset.prod {β : Type*} {p : α} (hp : prime p) (s : finset β) (f : β → α) :
multiplicity p (∏ x in s, f x) = ∑ x in s, multiplicity p (f x) :=
begin
classical,
induction s using finset.induction with a s has ih h,
{ simp only [finset.sum_empty, finset.prod_empty],
convert one_right hp.not_unit },
{ simp [has, ← ih],
convert multiplicity.mul hp }
end
protected lemma pow' {p a : α} (hp : prime p) (ha : finite p a) : ∀ {k : ℕ},
get (multiplicity p (a ^ k)) (finite_pow hp ha) = k * get (multiplicity p a) ha
| 0 := by simp [one_right hp.not_unit]
| (k+1) := have multiplicity p (a ^ (k + 1)) = multiplicity p (a * a ^ k), by rw pow_succ,
by rw [get_eq_get_of_eq _ _ this, multiplicity.mul' hp, pow', add_mul, one_mul, add_comm]
lemma pow {p a : α} (hp : prime p) : ∀ {k : ℕ},
multiplicity p (a ^ k) = k • (multiplicity p a)
| 0 := by simp [one_right hp.not_unit]
| (succ k) := by simp [pow_succ, succ_nsmul, pow, multiplicity.mul hp]
lemma multiplicity_pow_self {p : α} (h0 : p ≠ 0) (hu : ¬ is_unit p) (n : ℕ) :
multiplicity p (p ^ n) = n :=
by { rw [eq_coe_iff], use dvd_rfl, rw [pow_dvd_pow_iff h0 hu], apply nat.not_succ_le_self }
lemma multiplicity_pow_self_of_prime {p : α} (hp : prime p) (n : ℕ) :
multiplicity p (p ^ n) = n :=
multiplicity_pow_self hp.ne_zero hp.not_unit n
end cancel_comm_monoid_with_zero
section valuation
variables {R : Type*} [comm_ring R] [is_domain R] {p : R}
[decidable_rel (has_dvd.dvd : R → R → Prop)]
/-- `multiplicity` of a prime inan integral domain as an additive valuation to `part_enat`. -/
noncomputable def add_valuation (hp : prime p) : add_valuation R part_enat :=
add_valuation.of (multiplicity p) (multiplicity.zero _) (one_right hp.not_unit)
(λ _ _, min_le_multiplicity_add) (λ a b, multiplicity.mul hp)
@[simp]
lemma add_valuation_apply {hp : prime p} {r : R} : add_valuation hp r = multiplicity p r := rfl
end valuation
end multiplicity
section nat
open multiplicity
lemma multiplicity_eq_zero_of_coprime {p a b : ℕ} (hp : p ≠ 1)
(hle : multiplicity p a ≤ multiplicity p b)
(hab : nat.coprime a b) : multiplicity p a = 0 :=
begin
rw [multiplicity_le_multiplicity_iff] at hle,
rw [← nonpos_iff_eq_zero, ← not_lt, part_enat.pos_iff_one_le, ← nat.cast_one,
← pow_dvd_iff_le_multiplicity],
assume h,
have := nat.dvd_gcd h (hle _ h),
rw [coprime.gcd_eq_one hab, nat.dvd_one, pow_one] at this,
exact hp this
end
end nat