/- Copyright (c) 2018 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Robert Y. Lewis, Chris Hughes -/ import algebra.associated import algebra.big_operators.basic import ring_theory.valuation.basic /-! # Multiplicity of a divisor For a commutative monoid, this file introduces the notion of multiplicity of a divisor and proves several basic results on it. ## Main definitions * `multiplicity a b`: for two elements `a` and `b` of a commutative monoid returns the largest number `n` such that `a ^ n ∣ b` or infinity, written `⊤`, if `a ^ n ∣ b` for all natural numbers `n`. * `multiplicity.finite a b`: a predicate denoting that the multiplicity of `a` in `b` is finite. -/ variables {α : Type*} open nat part open_locale big_operators /-- `multiplicity a b` returns the largest natural number `n` such that `a ^ n ∣ b`, as an `part_enat` or natural with infinity. If `∀ n, a ^ n ∣ b`, then it returns `⊤`-/ def multiplicity [comm_monoid α] [decidable_rel ((∣) : α → α → Prop)] (a b : α) : part_enat := part_enat.find $ λ n, ¬a ^ (n + 1) ∣ b namespace multiplicity section comm_monoid variables [comm_monoid α] /-- `multiplicity.finite a b` indicates that the multiplicity of `a` in `b` is finite. -/ @[reducible] def finite (a b : α) : Prop := ∃ n : ℕ, ¬a ^ (n + 1) ∣ b lemma finite_iff_dom [decidable_rel ((∣) : α → α → Prop)] {a b : α} : finite a b ↔ (multiplicity a b).dom := iff.rfl lemma finite_def {a b : α} : finite a b ↔ ∃ n : ℕ, ¬a ^ (n + 1) ∣ b := iff.rfl @[norm_cast] theorem int.coe_nat_multiplicity (a b : ℕ) : multiplicity (a : ℤ) (b : ℤ) = multiplicity a b := begin apply part.ext', { repeat { rw [← finite_iff_dom, finite_def] }, norm_cast }, { intros h1 h2, apply _root_.le_antisymm; { apply nat.find_mono, norm_cast, simp } } end lemma not_finite_iff_forall {a b : α} : (¬ finite a b) ↔ ∀ n : ℕ, a ^ n ∣ b := ⟨λ h n, nat.cases_on n (by { rw pow_zero, exact one_dvd _ }) (by simpa [finite, not_not] using h), by simp [finite, multiplicity, not_not]; tauto⟩ lemma not_unit_of_finite {a b : α} (h : finite a b) : ¬is_unit a := let ⟨n, hn⟩ := h in mt (is_unit_iff_forall_dvd.1 ∘ is_unit.pow (n + 1)) $ λ h, hn (h b) lemma finite_of_finite_mul_left {a b c : α} : finite a (b * c) → finite a c := λ ⟨n, hn⟩, ⟨n, λ h, hn (h.trans (by simp [mul_pow]))⟩ lemma finite_of_finite_mul_right {a b c : α} : finite a (b * c) → finite a b := by rw mul_comm; exact finite_of_finite_mul_left variable [decidable_rel ((∣) : α → α → Prop)] lemma pow_dvd_of_le_multiplicity {a b : α} {k : ℕ} : (k : part_enat) ≤ multiplicity a b → a ^ k ∣ b := by { rw ← part_enat.some_eq_coe, exact nat.cases_on k (λ _, by { rw pow_zero, exact one_dvd _ }) (λ k ⟨h₁, h₂⟩, by_contradiction (λ hk, (nat.find_min _ (lt_of_succ_le (h₂ ⟨k, hk⟩)) hk))) } lemma pow_multiplicity_dvd {a b : α} (h : finite a b) : a ^ get (multiplicity a b) h ∣ b := pow_dvd_of_le_multiplicity (by rw part_enat.coe_get) lemma is_greatest {a b : α} {m : ℕ} (hm : multiplicity a b < m) : ¬a ^ m ∣ b := λ h, by rw [part_enat.lt_coe_iff] at hm; exact nat.find_spec hm.fst ((pow_dvd_pow _ hm.snd).trans h) lemma is_greatest' {a b : α} {m : ℕ} (h : finite a b) (hm : get (multiplicity a b) h < m) : ¬a ^ m ∣ b := is_greatest (by rwa [← part_enat.coe_lt_coe, part_enat.coe_get] at hm) lemma pos_of_dvd {a b : α} (hfin : finite a b) (hdiv : a ∣ b) : 0 < (multiplicity a b).get hfin := begin refine zero_lt_iff.2 (λ h, _), simpa [hdiv] using (is_greatest' hfin (lt_one_iff.mpr h)), end lemma unique {a b : α} {k : ℕ} (hk : a ^ k ∣ b) (hsucc : ¬a ^ (k + 1) ∣ b) : (k : part_enat) = multiplicity a b := le_antisymm (le_of_not_gt (λ hk', is_greatest hk' hk)) $ have finite a b, from ⟨k, hsucc⟩, by { rw [part_enat.le_coe_iff], exact ⟨this, nat.find_min' _ hsucc⟩ } lemma unique' {a b : α} {k : ℕ} (hk : a ^ k ∣ b) (hsucc : ¬ a ^ (k + 1) ∣ b) : k = get (multiplicity a b) ⟨k, hsucc⟩ := by rw [← part_enat.coe_inj, part_enat.coe_get, unique hk hsucc] lemma le_multiplicity_of_pow_dvd {a b : α} {k : ℕ} (hk : a ^ k ∣ b) : (k : part_enat) ≤ multiplicity a b := le_of_not_gt $ λ hk', is_greatest hk' hk lemma pow_dvd_iff_le_multiplicity {a b : α} {k : ℕ} : a ^ k ∣ b ↔ (k : part_enat) ≤ multiplicity a b := ⟨le_multiplicity_of_pow_dvd, pow_dvd_of_le_multiplicity⟩ lemma multiplicity_lt_iff_neg_dvd {a b : α} {k : ℕ} : multiplicity a b < (k : part_enat) ↔ ¬ a ^ k ∣ b := by { rw [pow_dvd_iff_le_multiplicity, not_le] } lemma eq_coe_iff {a b : α} {n : ℕ} : multiplicity a b = (n : part_enat) ↔ a ^ n ∣ b ∧ ¬a ^ (n + 1) ∣ b := begin rw [← part_enat.some_eq_coe], exact ⟨λ h, let ⟨h₁, h₂⟩ := eq_some_iff.1 h in h₂ ▸ ⟨pow_multiplicity_dvd _, is_greatest (by { rw [part_enat.lt_coe_iff], exact ⟨h₁, lt_succ_self _⟩ })⟩, λ h, eq_some_iff.2 ⟨⟨n, h.2⟩, eq.symm $ unique' h.1 h.2⟩⟩ end lemma eq_top_iff {a b : α} : multiplicity a b = ⊤ ↔ ∀ n : ℕ, a ^ n ∣ b := (part_enat.find_eq_top_iff _).trans $ by { simp only [not_not], exact ⟨λ h n, nat.cases_on n (by { rw pow_zero, exact one_dvd _}) (λ n, h _), λ h n, h _⟩ } @[simp] lemma is_unit_left {a : α} (b : α) (ha : is_unit a) : multiplicity a b = ⊤ := eq_top_iff.2 (λ _, is_unit_iff_forall_dvd.1 (ha.pow _) _) lemma is_unit_right {a b : α} (ha : ¬is_unit a) (hb : is_unit b) : multiplicity a b = 0 := eq_coe_iff.2 ⟨show a ^ 0 ∣ b, by simp only [pow_zero, one_dvd], by { rw pow_one, exact λ h, mt (is_unit_of_dvd_unit h) ha hb }⟩ @[simp] lemma one_left (b : α) : multiplicity 1 b = ⊤ := is_unit_left b is_unit_one lemma one_right {a : α} (ha : ¬is_unit a) : multiplicity a 1 = 0 := is_unit_right ha is_unit_one @[simp] lemma get_one_right {a : α} (ha : finite a 1) : get (multiplicity a 1) ha = 0 := begin rw [part_enat.get_eq_iff_eq_coe, eq_coe_iff, pow_zero], simpa [is_unit_iff_dvd_one.symm] using not_unit_of_finite ha, end @[simp] lemma unit_left (a : α) (u : αˣ) : multiplicity (u : α) a = ⊤ := is_unit_left a u.is_unit lemma unit_right {a : α} (ha : ¬is_unit a) (u : αˣ) : multiplicity a u = 0 := is_unit_right ha u.is_unit lemma multiplicity_eq_zero_of_not_dvd {a b : α} (ha : ¬a ∣ b) : multiplicity a b = 0 := by { rw [← nat.cast_zero, eq_coe_iff], simpa } lemma eq_top_iff_not_finite {a b : α} : multiplicity a b = ⊤ ↔ ¬ finite a b := part.eq_none_iff' lemma ne_top_iff_finite {a b : α} : multiplicity a b ≠ ⊤ ↔ finite a b := by rw [ne.def, eq_top_iff_not_finite, not_not] lemma lt_top_iff_finite {a b : α} : multiplicity a b < ⊤ ↔ finite a b := by rw [lt_top_iff_ne_top, ne_top_iff_finite] lemma exists_eq_pow_mul_and_not_dvd {a b : α} (hfin : finite a b) : ∃ (c : α), b = a ^ ((multiplicity a b).get hfin) * c ∧ ¬ a ∣ c := begin obtain ⟨c, hc⟩ := multiplicity.pow_multiplicity_dvd hfin, refine ⟨c, hc, _⟩, rintro ⟨k, hk⟩, rw [hk, ← mul_assoc, ← pow_succ'] at hc, have h₁ : a ^ ((multiplicity a b).get hfin + 1) ∣ b := ⟨k, hc⟩, exact (multiplicity.eq_coe_iff.1 (by simp)).2 h₁, end open_locale classical lemma multiplicity_le_multiplicity_iff {a b c d : α} : multiplicity a b ≤ multiplicity c d ↔ (∀ n : ℕ, a ^ n ∣ b → c ^ n ∣ d) := ⟨λ h n hab, (pow_dvd_of_le_multiplicity (le_trans (le_multiplicity_of_pow_dvd hab) h)), λ h, if hab : finite a b then by rw [← part_enat.coe_get (finite_iff_dom.1 hab)]; exact le_multiplicity_of_pow_dvd (h _ (pow_multiplicity_dvd _)) else have ∀ n : ℕ, c ^ n ∣ d, from λ n, h n (not_finite_iff_forall.1 hab _), by rw [eq_top_iff_not_finite.2 hab, eq_top_iff_not_finite.2 (not_finite_iff_forall.2 this)]⟩ lemma multiplicity_le_multiplicity_of_dvd_left {a b c : α} (hdvd : a ∣ b) : multiplicity b c ≤ multiplicity a c := multiplicity_le_multiplicity_iff.2 $ λ n h, (pow_dvd_pow_of_dvd hdvd n).trans h lemma eq_of_associated_left {a b c : α} (h : associated a b) : multiplicity b c = multiplicity a c := le_antisymm (multiplicity_le_multiplicity_of_dvd_left h.dvd) (multiplicity_le_multiplicity_of_dvd_left h.symm.dvd) lemma multiplicity_le_multiplicity_of_dvd_right {a b c : α} (h : b ∣ c) : multiplicity a b ≤ multiplicity a c := multiplicity_le_multiplicity_iff.2 $ λ n hb, hb.trans h lemma eq_of_associated_right {a b c : α} (h : associated b c) : multiplicity a b = multiplicity a c := le_antisymm (multiplicity_le_multiplicity_of_dvd_right h.dvd) (multiplicity_le_multiplicity_of_dvd_right h.symm.dvd) lemma dvd_of_multiplicity_pos {a b : α} (h : (0 : part_enat) < multiplicity a b) : a ∣ b := begin rw ← pow_one a, apply pow_dvd_of_le_multiplicity, simpa only [nat.cast_one, part_enat.pos_iff_one_le] using h end lemma dvd_iff_multiplicity_pos {a b : α} : (0 : part_enat) < multiplicity a b ↔ a ∣ b := ⟨dvd_of_multiplicity_pos, λ hdvd, lt_of_le_of_ne (zero_le _) (λ heq, is_greatest (show multiplicity a b < ↑1, by simpa only [heq, nat.cast_zero] using part_enat.coe_lt_coe.mpr zero_lt_one) (by rwa pow_one a))⟩ lemma finite_nat_iff {a b : ℕ} : finite a b ↔ (a ≠ 1 ∧ 0 < b) := begin rw [← not_iff_not, not_finite_iff_forall, not_and_distrib, ne.def, not_not, not_lt, nat.le_zero_iff], exact ⟨λ h, or_iff_not_imp_right.2 (λ hb, have ha : a ≠ 0, from λ ha, by simpa [ha] using h 1, by_contradiction (λ ha1 : a ≠ 1, have ha_gt_one : 1 < a, from lt_of_not_ge (λ ha', by { clear h, revert ha ha1, dec_trivial! }), not_lt_of_ge (le_of_dvd (nat.pos_of_ne_zero hb) (h b)) (lt_pow_self ha_gt_one b))), λ h, by cases h; simp *⟩ end alias dvd_iff_multiplicity_pos ↔ _ _root_.has_dvd.dvd.multiplicity_pos end comm_monoid section comm_monoid_with_zero variable [comm_monoid_with_zero α] lemma ne_zero_of_finite {a b : α} (h : finite a b) : b ≠ 0 := let ⟨n, hn⟩ := h in λ hb, by simpa [hb] using hn variable [decidable_rel ((∣) : α → α → Prop)] @[simp] protected lemma zero (a : α) : multiplicity a 0 = ⊤ := part.eq_none_iff.2 (λ n ⟨⟨k, hk⟩, _⟩, hk (dvd_zero _)) @[simp] lemma multiplicity_zero_eq_zero_of_ne_zero (a : α) (ha : a ≠ 0) : multiplicity 0 a = 0 := begin apply multiplicity.multiplicity_eq_zero_of_not_dvd, rwa zero_dvd_iff, end lemma multiplicity_mk_eq_multiplicity [decidable_rel ((∣) : associates α → associates α → Prop)] {a b : α} : multiplicity (associates.mk a) (associates.mk b) = multiplicity a b := begin by_cases h : finite a b, { rw ← part_enat.coe_get (finite_iff_dom.mp h), refine (multiplicity.unique (show (associates.mk a)^(((multiplicity a b).get h)) ∣ associates.mk b, from _) _).symm ; rw [← associates.mk_pow, associates.mk_dvd_mk], { exact pow_multiplicity_dvd h }, { exact is_greatest ((part_enat.lt_coe_iff _ _).mpr (exists.intro (finite_iff_dom.mp h) (nat.lt_succ_self _))) } }, { suffices : ¬ (finite (associates.mk a) (associates.mk b)), { rw [finite_iff_dom, part_enat.not_dom_iff_eq_top] at h this, rw [h, this] }, refine not_finite_iff_forall.mpr (λ n, by {rw [← associates.mk_pow, associates.mk_dvd_mk], exact not_finite_iff_forall.mp h n }) } end end comm_monoid_with_zero section comm_semiring variables [comm_semiring α] [decidable_rel ((∣) : α → α → Prop)] lemma min_le_multiplicity_add {p a b : α} : min (multiplicity p a) (multiplicity p b) ≤ multiplicity p (a + b) := (le_total (multiplicity p a) (multiplicity p b)).elim (λ h, by rw [min_eq_left h, multiplicity_le_multiplicity_iff]; exact λ n hn, dvd_add hn (multiplicity_le_multiplicity_iff.1 h n hn)) (λ h, by rw [min_eq_right h, multiplicity_le_multiplicity_iff]; exact λ n hn, dvd_add (multiplicity_le_multiplicity_iff.1 h n hn) hn) end comm_semiring section comm_ring variables [comm_ring α] [decidable_rel ((∣) : α → α → Prop)] open_locale classical @[simp] protected lemma neg (a b : α) : multiplicity a (-b) = multiplicity a b := part.ext' (by simp only [multiplicity, part_enat.find, dvd_neg]) (λ h₁ h₂, part_enat.coe_inj.1 (by rw [part_enat.coe_get]; exact eq.symm (unique ((dvd_neg _ _).2 (pow_multiplicity_dvd _)) (mt (dvd_neg _ _).1 (is_greatest' _ (lt_succ_self _)))))) theorem int.nat_abs (a : ℕ) (b : ℤ) : multiplicity a b.nat_abs = multiplicity (a : ℤ) b := begin cases int.nat_abs_eq b with h h; conv_rhs { rw h }, { rw [int.coe_nat_multiplicity], }, { rw [multiplicity.neg, int.coe_nat_multiplicity], }, end lemma multiplicity_add_of_gt {p a b : α} (h : multiplicity p b < multiplicity p a) : multiplicity p (a + b) = multiplicity p b := begin apply le_antisymm, { apply part_enat.le_of_lt_add_one, cases part_enat.ne_top_iff.mp (part_enat.ne_top_of_lt h) with k hk, rw [hk], rw_mod_cast [multiplicity_lt_iff_neg_dvd], intro h_dvd, rw [← dvd_add_iff_right] at h_dvd, apply multiplicity.is_greatest _ h_dvd, rw [hk], apply_mod_cast nat.lt_succ_self, rw [pow_dvd_iff_le_multiplicity, nat.cast_add, ← hk, nat.cast_one], exact part_enat.add_one_le_of_lt h }, { convert min_le_multiplicity_add, rw [min_eq_right (le_of_lt h)] } end lemma multiplicity_sub_of_gt {p a b : α} (h : multiplicity p b < multiplicity p a) : multiplicity p (a - b) = multiplicity p b := by { rw [sub_eq_add_neg, multiplicity_add_of_gt]; rwa [multiplicity.neg] } lemma multiplicity_add_eq_min {p a b : α} (h : multiplicity p a ≠ multiplicity p b) : multiplicity p (a + b) = min (multiplicity p a) (multiplicity p b) := begin rcases lt_trichotomy (multiplicity p a) (multiplicity p b) with hab|hab|hab, { rw [add_comm, multiplicity_add_of_gt hab, min_eq_left], exact le_of_lt hab }, { contradiction }, { rw [multiplicity_add_of_gt hab, min_eq_right], exact le_of_lt hab}, end end comm_ring section cancel_comm_monoid_with_zero variables [cancel_comm_monoid_with_zero α] lemma finite_mul_aux {p : α} (hp : prime p) : ∀ {n m : ℕ} {a b : α}, ¬p ^ (n + 1) ∣ a → ¬p ^ (m + 1) ∣ b → ¬p ^ (n + m + 1) ∣ a * b | n m := λ a b ha hb ⟨s, hs⟩, have p ∣ a * b, from ⟨p ^ (n + m) * s, by simp [hs, pow_add, mul_comm, mul_assoc, mul_left_comm]⟩, (hp.2.2 a b this).elim (λ ⟨x, hx⟩, have hn0 : 0 < n, from nat.pos_of_ne_zero (λ hn0, by clear _fun_match _fun_match; simpa [hx, hn0] using ha), have wf : (n - 1) < n, from tsub_lt_self hn0 dec_trivial, have hpx : ¬ p ^ (n - 1 + 1) ∣ x, from λ ⟨y, hy⟩, ha (hx.symm ▸ ⟨y, mul_right_cancel₀ hp.1 $ by rw [tsub_add_cancel_of_le (succ_le_of_lt hn0)] at hy; simp [hy, pow_add, mul_comm, mul_assoc, mul_left_comm]⟩), have 1 ≤ n + m, from le_trans hn0 (nat.le_add_right n m), finite_mul_aux hpx hb ⟨s, mul_right_cancel₀ hp.1 begin rw [tsub_add_eq_add_tsub (succ_le_of_lt hn0), tsub_add_cancel_of_le this], clear _fun_match _fun_match finite_mul_aux, simp [*, mul_comm, mul_assoc, mul_left_comm, pow_add] at * end⟩) (λ ⟨x, hx⟩, have hm0 : 0 < m, from nat.pos_of_ne_zero (λ hm0, by clear _fun_match _fun_match; simpa [hx, hm0] using hb), have wf : (m - 1) < m, from tsub_lt_self hm0 dec_trivial, have hpx : ¬ p ^ (m - 1 + 1) ∣ x, from λ ⟨y, hy⟩, hb (hx.symm ▸ ⟨y, mul_right_cancel₀ hp.1 $ by rw [tsub_add_cancel_of_le (succ_le_of_lt hm0)] at hy; simp [hy, pow_add, mul_comm, mul_assoc, mul_left_comm]⟩), finite_mul_aux ha hpx ⟨s, mul_right_cancel₀ hp.1 begin rw [add_assoc, tsub_add_cancel_of_le (succ_le_of_lt hm0)], clear _fun_match _fun_match finite_mul_aux, simp [*, mul_comm, mul_assoc, mul_left_comm, pow_add] at * end⟩) lemma finite_mul {p a b : α} (hp : prime p) : finite p a → finite p b → finite p (a * b) := λ ⟨n, hn⟩ ⟨m, hm⟩, ⟨n + m, finite_mul_aux hp hn hm⟩ lemma finite_mul_iff {p a b : α} (hp : prime p) : finite p (a * b) ↔ finite p a ∧ finite p b := ⟨λ h, ⟨finite_of_finite_mul_right h, finite_of_finite_mul_left h⟩, λ h, finite_mul hp h.1 h.2⟩ lemma finite_pow {p a : α} (hp : prime p) : Π {k : ℕ} (ha : finite p a), finite p (a ^ k) | 0 ha := ⟨0, by simp [mt is_unit_iff_dvd_one.2 hp.2.1]⟩ | (k+1) ha := by rw [pow_succ]; exact finite_mul hp ha (finite_pow ha) variable [decidable_rel ((∣) : α → α → Prop)] @[simp] lemma multiplicity_self {a : α} (ha : ¬is_unit a) (ha0 : a ≠ 0) : multiplicity a a = 1 := by { rw ← nat.cast_one, exact eq_coe_iff.2 ⟨by simp, λ ⟨b, hb⟩, ha (is_unit_iff_dvd_one.2 ⟨b, mul_left_cancel₀ ha0 $ by { clear _fun_match, simpa [pow_succ, mul_assoc] using hb }⟩)⟩ } @[simp] lemma get_multiplicity_self {a : α} (ha : finite a a) : get (multiplicity a a) ha = 1 := part_enat.get_eq_iff_eq_coe.2 (eq_coe_iff.2 ⟨by simp, λ ⟨b, hb⟩, by rw [← mul_one a, pow_add, pow_one, mul_assoc, mul_assoc, mul_right_inj' (ne_zero_of_finite ha)] at hb; exact mt is_unit_iff_dvd_one.2 (not_unit_of_finite ha) ⟨b, by clear _fun_match; simp * at *⟩⟩) protected lemma mul' {p a b : α} (hp : prime p) (h : (multiplicity p (a * b)).dom) : get (multiplicity p (a * b)) h = get (multiplicity p a) ((finite_mul_iff hp).1 h).1 + get (multiplicity p b) ((finite_mul_iff hp).1 h).2 := have hdiva : p ^ get (multiplicity p a) ((finite_mul_iff hp).1 h).1 ∣ a, from pow_multiplicity_dvd _, have hdivb : p ^ get (multiplicity p b) ((finite_mul_iff hp).1 h).2 ∣ b, from pow_multiplicity_dvd _, have hpoweq : p ^ (get (multiplicity p a) ((finite_mul_iff hp).1 h).1 + get (multiplicity p b) ((finite_mul_iff hp).1 h).2) = p ^ get (multiplicity p a) ((finite_mul_iff hp).1 h).1 * p ^ get (multiplicity p b) ((finite_mul_iff hp).1 h).2, by simp [pow_add], have hdiv : p ^ (get (multiplicity p a) ((finite_mul_iff hp).1 h).1 + get (multiplicity p b) ((finite_mul_iff hp).1 h).2) ∣ a * b, by rw [hpoweq]; apply mul_dvd_mul; assumption, have hsucc : ¬p ^ ((get (multiplicity p a) ((finite_mul_iff hp).1 h).1 + get (multiplicity p b) ((finite_mul_iff hp).1 h).2) + 1) ∣ a * b, from λ h, by exact not_or (is_greatest' _ (lt_succ_self _)) (is_greatest' _ (lt_succ_self _)) (_root_.succ_dvd_or_succ_dvd_of_succ_sum_dvd_mul hp hdiva hdivb h), by rw [← part_enat.coe_inj, part_enat.coe_get, eq_coe_iff]; exact ⟨hdiv, hsucc⟩ open_locale classical protected lemma mul {p a b : α} (hp : prime p) : multiplicity p (a * b) = multiplicity p a + multiplicity p b := if h : finite p a ∧ finite p b then by rw [← part_enat.coe_get (finite_iff_dom.1 h.1), ← part_enat.coe_get (finite_iff_dom.1 h.2), ← part_enat.coe_get (finite_iff_dom.1 (finite_mul hp h.1 h.2)), ← nat.cast_add, part_enat.coe_inj, multiplicity.mul' hp]; refl else begin rw [eq_top_iff_not_finite.2 (mt (finite_mul_iff hp).1 h)], cases not_and_distrib.1 h with h h; simp [eq_top_iff_not_finite.2 h] end lemma finset.prod {β : Type*} {p : α} (hp : prime p) (s : finset β) (f : β → α) : multiplicity p (∏ x in s, f x) = ∑ x in s, multiplicity p (f x) := begin classical, induction s using finset.induction with a s has ih h, { simp only [finset.sum_empty, finset.prod_empty], convert one_right hp.not_unit }, { simp [has, ← ih], convert multiplicity.mul hp } end protected lemma pow' {p a : α} (hp : prime p) (ha : finite p a) : ∀ {k : ℕ}, get (multiplicity p (a ^ k)) (finite_pow hp ha) = k * get (multiplicity p a) ha | 0 := by simp [one_right hp.not_unit] | (k+1) := have multiplicity p (a ^ (k + 1)) = multiplicity p (a * a ^ k), by rw pow_succ, by rw [get_eq_get_of_eq _ _ this, multiplicity.mul' hp, pow', add_mul, one_mul, add_comm] lemma pow {p a : α} (hp : prime p) : ∀ {k : ℕ}, multiplicity p (a ^ k) = k • (multiplicity p a) | 0 := by simp [one_right hp.not_unit] | (succ k) := by simp [pow_succ, succ_nsmul, pow, multiplicity.mul hp] lemma multiplicity_pow_self {p : α} (h0 : p ≠ 0) (hu : ¬ is_unit p) (n : ℕ) : multiplicity p (p ^ n) = n := by { rw [eq_coe_iff], use dvd_rfl, rw [pow_dvd_pow_iff h0 hu], apply nat.not_succ_le_self } lemma multiplicity_pow_self_of_prime {p : α} (hp : prime p) (n : ℕ) : multiplicity p (p ^ n) = n := multiplicity_pow_self hp.ne_zero hp.not_unit n end cancel_comm_monoid_with_zero section valuation variables {R : Type*} [comm_ring R] [is_domain R] {p : R} [decidable_rel (has_dvd.dvd : R → R → Prop)] /-- `multiplicity` of a prime inan integral domain as an additive valuation to `part_enat`. -/ noncomputable def add_valuation (hp : prime p) : add_valuation R part_enat := add_valuation.of (multiplicity p) (multiplicity.zero _) (one_right hp.not_unit) (λ _ _, min_le_multiplicity_add) (λ a b, multiplicity.mul hp) @[simp] lemma add_valuation_apply {hp : prime p} {r : R} : add_valuation hp r = multiplicity p r := rfl end valuation end multiplicity section nat open multiplicity lemma multiplicity_eq_zero_of_coprime {p a b : ℕ} (hp : p ≠ 1) (hle : multiplicity p a ≤ multiplicity p b) (hab : nat.coprime a b) : multiplicity p a = 0 := begin rw [multiplicity_le_multiplicity_iff] at hle, rw [← nonpos_iff_eq_zero, ← not_lt, part_enat.pos_iff_one_le, ← nat.cast_one, ← pow_dvd_iff_le_multiplicity], assume h, have := nat.dvd_gcd h (hle _ h), rw [coprime.gcd_eq_one hab, nat.dvd_one, pow_one] at this, exact hp this end end nat