Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
14.8 kB
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Devon Tuma
-/
import ring_theory.ideal.quotient
import ring_theory.polynomial.basic
/-!
# Jacobson radical
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`.
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`.
We can extend the idea of the nilradical to ideals of `R`,
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`.
Under this extension, the original nilradical is the radical of the zero ideal `⊥`.
Here we define the Jacobson radical of an ideal `I` in a similar way,
as the intersection of maximal ideals containing `I`.
## Main definitions
Let `R` be a commutative ring, and `I` be an ideal of `R`
* `jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I.
* `is_local I` is the proposition that the jacobson radical of `I` is itself a maximal ideal
## Main statements
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I
* `is_local_of_is_maximal_radical`: if the radical of I is maximal then so is the jacobson radical
## Tags
Jacobson, Jacobson radical, Local Ideal
-/
universes u v
namespace ideal
variables {R : Type u} {S : Type v}
open_locale polynomial
section jacobson
section ring
variables [ring R] [ring S] {I : ideal R}
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/
def jacobson (I : ideal R) : ideal R :=
Inf {J : ideal R | I ≤ J ∧ is_maximal J}
lemma le_jacobson : I ≤ jacobson I :=
λ x hx, mem_Inf.mpr (λ J hJ, hJ.left hx)
@[simp] lemma jacobson_idem : jacobson (jacobson I) = jacobson I :=
le_antisymm (Inf_le_Inf (λ J hJ, ⟨Inf_le hJ, hJ.2⟩)) le_jacobson
@[simp] lemma jacobson_top : jacobson (⊤ : ideal R) = ⊤ :=
eq_top_iff.2 le_jacobson
@[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ :=
⟨λ H, classical.by_contradiction $ λ hi, let ⟨M, hm, him⟩ := exists_le_maximal I hi in
lt_top_iff_ne_top.1
(lt_of_le_of_lt (show jacobson I ≤ M, from Inf_le ⟨him, hm⟩) $
lt_top_iff_ne_top.2 hm.ne_top) H,
λ H, eq_top_iff.2 $ le_Inf $ λ J ⟨hij, hj⟩, H ▸ hij⟩
lemma jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ :=
λ h, eq_bot_iff.mpr (h ▸ le_jacobson)
lemma jacobson_eq_self_of_is_maximal [H : is_maximal I] : I.jacobson = I :=
le_antisymm (Inf_le ⟨le_of_eq rfl, H⟩) le_jacobson
@[priority 100]
instance jacobson.is_maximal [H : is_maximal I] : is_maximal (jacobson I) :=
⟨⟨λ htop, H.1.1 (jacobson_eq_top_iff.1 htop),
λ J hJ, H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I :=
⟨λ hx y, classical.by_cases
(assume hxy : I ⊔ span {y * x + 1} = ⊤,
let ⟨p, hpi, q, hq, hpq⟩ := submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) in
let ⟨r, hr⟩ := mem_span_singleton'.1 hq in
⟨r, by rw [mul_assoc, ←mul_add_one, hr, ← hpq, ← neg_sub, add_sub_cancel]; exact I.neg_mem hpi⟩)
(assume hxy : I ⊔ span {y * x + 1} ≠ ⊤,
let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy in
suffices x ∉ M, from (this $ mem_Inf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim,
λ hxm, hm1.1.1 $ (eq_top_iff_one _).2 $ add_sub_cancel' (y * x) 1 ▸ M.sub_mem
(le_sup_right.trans hm2 $ subset_span rfl)
(M.mul_mem_left _ hxm)),
λ hx, mem_Inf.2 $ λ M ⟨him, hm⟩, classical.by_contradiction $ λ hxm,
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm, ⟨z, hz⟩ := hx (-y) in
hm.1.1 $ (eq_top_iff_one _).2 $ sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem
(by { rw [mul_assoc, ←mul_add_one, neg_mul, ← (sub_eq_iff_eq_add.mpr df.symm), neg_sub,
sub_add_cancel],
exact M.mul_mem_left _ hi }) (him hz)⟩
lemma exists_mul_sub_mem_of_sub_one_mem_jacobson {I : ideal R} (r : R)
(h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I :=
begin
cases mem_jacobson_iff.1 h 1 with s hs,
use s,
simpa [mul_sub] using hs
end
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals.
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/
theorem eq_jacobson_iff_Inf_maximal :
I.jacobson = I ↔ ∃ M : set (ideal R), (∀ J ∈ M, is_maximal J ∨ J = ⊤) ∧ I = Inf M :=
begin
use λ hI, ⟨{J : ideal R | I ≤ J ∧ J.is_maximal}, ⟨λ _ hJ, or.inl hJ.right, hI.symm⟩⟩,
rintros ⟨M, hM, hInf⟩,
refine le_antisymm (λ x hx, _) le_jacobson,
rw [hInf, mem_Inf],
intros I hI,
cases hM I hI with is_max is_top,
{ exact (mem_Inf.1 hx) ⟨le_Inf_iff.1 (le_of_eq hInf) I hI, is_max⟩ },
{ exact is_top.symm ▸ submodule.mem_top }
end
theorem eq_jacobson_iff_Inf_maximal' :
I.jacobson = I ↔ ∃ M : set (ideal R), (∀ (J ∈ M) (K : ideal R), J < K → K = ⊤) ∧ I = Inf M :=
eq_jacobson_iff_Inf_maximal.trans
⟨λ h, let ⟨M, hM⟩ := h in ⟨M, ⟨λ J hJ K hK, or.rec_on (hM.1 J hJ) (λ h, h.1.2 K hK)
(λ h, eq_top_iff.2 (le_of_lt (h ▸ hK))), hM.2⟩⟩,
λ h, let ⟨M, hM⟩ := h in ⟨M, ⟨λ J hJ, or.rec_on (classical.em (J = ⊤)) (λ h, or.inr h)
(λ h, or.inl ⟨⟨h, hM.1 J hJ⟩⟩), hM.2⟩⟩⟩
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I`
also lies outside of a maximal ideal containing `I`. -/
lemma eq_jacobson_iff_not_mem :
I.jacobson = I ↔ ∀ x ∉ I, ∃ M : ideal R, (I ≤ M ∧ M.is_maximal) ∧ x ∉ M :=
begin
split,
{ intros h x hx,
erw [← h, mem_Inf] at hx,
push_neg at hx,
exact hx },
{ refine λ h, le_antisymm (λ x hx, _) le_jacobson,
contrapose hx,
erw mem_Inf,
push_neg,
exact h x hx }
end
theorem map_jacobson_of_surjective {f : R →+* S} (hf : function.surjective f) :
ring_hom.ker f ≤ I → map f (I.jacobson) = (map f I).jacobson :=
begin
intro h,
unfold ideal.jacobson,
have : ∀ J ∈ {J : ideal R | I ≤ J ∧ J.is_maximal}, f.ker ≤ J := λ J hJ, le_trans h hJ.left,
refine trans (map_Inf hf this) (le_antisymm _ _),
{ refine Inf_le_Inf (λ J hJ, ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩,
map_comap_of_surjective f hf J⟩⟩),
haveI : J.is_maximal := hJ.right,
exact comap_is_maximal_of_surjective f hf },
{ refine Inf_le_Inf_of_subset_insert_top (λ j hj, hj.rec_on (λ J hJ, _)),
rw ← hJ.2,
cases map_eq_top_or_is_maximal_of_surjective f hf hJ.left.right with htop hmax,
{ exact htop.symm ▸ set.mem_insert ⊤ _ },
{ exact set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ } },
end
lemma map_jacobson_of_bijective {f : R →+* S} (hf : function.bijective f) :
map f (I.jacobson) = (map f I).jacobson :=
map_jacobson_of_surjective hf.right
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le)
lemma comap_jacobson {f : R →+* S} {K : ideal S} :
comap f (K.jacobson) = Inf (comap f '' {J : ideal S | K ≤ J ∧ J.is_maximal}) :=
trans (comap_Inf' f _) (Inf_eq_infi).symm
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : function.surjective f) {K : ideal S} :
comap f (K.jacobson) = (comap f K).jacobson :=
begin
unfold ideal.jacobson,
refine le_antisymm _ _,
{ refine le_trans (comap_mono (le_of_eq (trans top_inf_eq.symm Inf_insert.symm))) _,
rw [comap_Inf', Inf_eq_infi],
refine infi_le_infi_of_subset (λ J hJ, _),
have : comap f (map f J) = J := trans (comap_map_of_surjective f hf J)
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left),
cases map_eq_top_or_is_maximal_of_surjective _ hf hJ.right with htop hmax,
{ refine ⟨⊤, ⟨set.mem_insert ⊤ _, htop ▸ this⟩⟩ },
{ refine ⟨map f J, ⟨set.mem_insert_of_mem _
⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ } },
{ rw comap_Inf,
refine le_infi_iff.2 (λ J, (le_infi_iff.2 (λ hJ, _))),
haveI : J.is_maximal := hJ.right,
refine Inf_le ⟨comap_mono hJ.left, comap_is_maximal_of_surjective _ hf⟩ }
end
@[mono] lemma jacobson_mono {I J : ideal R} : I ≤ J → I.jacobson ≤ J.jacobson :=
begin
intros h x hx,
erw mem_Inf at ⊢ hx,
exact λ K ⟨hK, hK_max⟩, hx ⟨trans h hK, hK_max⟩
end
end ring
section comm_ring
variables [comm_ring R] [comm_ring S] {I : ideal R}
lemma radical_le_jacobson : radical I ≤ jacobson I :=
le_Inf (λ J hJ, (radical_eq_Inf I).symm ▸ Inf_le ⟨hJ.left, is_maximal.is_prime hJ.right⟩)
lemma eq_radical_of_eq_jacobson : jacobson I = I → radical I = I :=
λ h, le_antisymm (le_trans radical_le_jacobson (le_of_eq h)) le_radical
lemma is_unit_of_sub_one_mem_jacobson_bot (r : R)
(h : r - 1 ∈ jacobson (⊥ : ideal R)) : is_unit r :=
begin
cases exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs,
rw [mem_bot, sub_eq_zero, mul_comm] at hs,
exact is_unit_of_mul_eq_one _ _ hs
end
lemma mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : ideal R) ↔ ∀ y, is_unit (x * y + 1) :=
⟨λ hx y, let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y in
is_unit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm,
mul_comm _ z, mul_right_comm]⟩,
λ h, mem_jacobson_iff.mpr (λ y, (let ⟨b, hb⟩ := is_unit_iff_exists_inv.1 (h y) in
⟨b, (submodule.mem_bot R).2 (hb ▸ (by ring))⟩))⟩
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/
theorem jacobson_eq_iff_jacobson_quotient_eq_bot :
I.jacobson = I ↔ jacobson (⊥ : ideal (R ⧸ I)) = ⊥ :=
begin
have hf : function.surjective (quotient.mk I) := submodule.quotient.mk_surjective I,
split,
{ intro h,
replace h := congr_arg (map (quotient.mk I)) h,
rw map_jacobson_of_surjective hf (le_of_eq mk_ker) at h,
simpa using h },
{ intro h,
replace h := congr_arg (comap (quotient.mk I)) h,
rw [comap_jacobson_of_surjective hf, ← (quotient.mk I).ker_eq_comap_bot] at h,
simpa using h }
end
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot :
I.radical = I.jacobson ↔ radical (⊥ : ideal (R ⧸ I)) = jacobson ⊥ :=
begin
have hf : function.surjective (quotient.mk I) := submodule.quotient.mk_surjective I,
split,
{ intro h,
have := congr_arg (map (quotient.mk I)) h,
rw [map_radical_of_surjective hf (le_of_eq mk_ker),
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this,
simpa using this },
{ intro h,
have := congr_arg (comap (quotient.mk I)) h,
rw [comap_radical, comap_jacobson_of_surjective hf, ← (quotient.mk I).ker_eq_comap_bot] at this,
simpa using this }
end
lemma jacobson_radical_eq_jacobson :
I.radical.jacobson = I.jacobson :=
le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_Inf I)))
(Inf_le_Inf (λ J hJ, ⟨Inf_le ⟨hJ.1, hJ.2.is_prime⟩, hJ.2⟩))) (jacobson_mono le_radical)
end comm_ring
end jacobson
section polynomial
open polynomial
variables [comm_ring R]
lemma jacobson_bot_polynomial_le_Inf_map_maximal :
jacobson (⊥ : ideal R[X]) ≤ Inf (map (C : R →+* R[X]) '' {J : ideal R | J.is_maximal}) :=
begin
refine le_Inf (λ J, exists_imp_distrib.2 (λ j hj, _)),
haveI : j.is_maximal := hj.1,
refine trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J),
suffices : (⊥ : ideal (polynomial (R ⧸ j))).jacobson = ⊥,
{ rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot],
replace this :=
congr_arg (map (polynomial_quotient_equiv_quotient_polynomial j).to_ring_hom) this,
rwa [map_jacobson_of_bijective _, map_bot] at this,
exact (ring_equiv.bijective (polynomial_quotient_equiv_quotient_polynomial j)) },
refine eq_bot_iff.2 (λ f hf, _),
simpa [(λ hX, by simpa using congr_arg (λ f, coeff f 1) hX : (X : (R ⧸ j)[X]) ≠ 0)]
using eq_C_of_degree_eq_zero (degree_eq_zero_of_is_unit ((mem_jacobson_bot.1 hf) X)),
end
lemma jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : ideal R) = ⊥) :
jacobson (⊥ : ideal R[X]) = ⊥ :=
begin
refine eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_Inf_map_maximal _),
refine (λ f hf, ((submodule.mem_bot _).2 (polynomial.ext (λ n, trans _ (coeff_zero n).symm)))),
suffices : f.coeff n ∈ ideal.jacobson ⊥, by rwa [h, submodule.mem_bot] at this,
exact mem_Inf.2 (λ j hj, (mem_map_C_iff.1 ((mem_Inf.1 hf) ⟨j, ⟨hj.2, rfl⟩⟩)) n),
end
end polynomial
section is_local
variables [comm_ring R]
/-- An ideal `I` is local iff its Jacobson radical is maximal. -/
class is_local (I : ideal R) : Prop := (out : is_maximal (jacobson I))
theorem is_local_iff {I : ideal R} : is_local I ↔ is_maximal (jacobson I) :=
⟨λ h, h.1, λ h, ⟨h⟩⟩
theorem is_local_of_is_maximal_radical {I : ideal R} (hi : is_maximal (radical I)) : is_local I :=
⟨have radical I = jacobson I,
from le_antisymm (le_Inf $ λ M ⟨him, hm⟩, hm.is_prime.radical_le_iff.2 him)
(Inf_le ⟨le_radical, hi⟩),
show is_maximal (jacobson I), from this ▸ hi⟩
theorem is_local.le_jacobson {I J : ideal R} (hi : is_local I) (hij : I ≤ J) (hj : J ≠ ⊤) :
J ≤ jacobson I :=
let ⟨M, hm, hjm⟩ := exists_le_maximal J hj in
le_trans hjm $ le_of_eq $ eq.symm $ hi.1.eq_of_le hm.1.1 $ Inf_le ⟨le_trans hij hjm, hm⟩
theorem is_local.mem_jacobson_or_exists_inv {I : ideal R} (hi : is_local I) (x : R) :
x ∈ jacobson I ∨ ∃ y, y * x - 1 ∈ I :=
classical.by_cases
(assume h : I ⊔ span {x} = ⊤,
let ⟨p, hpi, q, hq, hpq⟩ := submodule.mem_sup.1 ((eq_top_iff_one _).1 h) in
let ⟨r, hr⟩ := mem_span_singleton.1 hq in
or.inr ⟨r, by rw [← hpq, mul_comm, ← hr, ← neg_sub, add_sub_cancel]; exact I.neg_mem hpi⟩)
(assume h : I ⊔ span {x} ≠ ⊤,
or.inl $ le_trans le_sup_right (hi.le_jacobson le_sup_left h) $ mem_span_singleton.2 $
dvd_refl x)
end is_local
theorem is_primary_of_is_maximal_radical [comm_ring R] {I : ideal R} (hi : is_maximal (radical I)) :
is_primary I :=
have radical I = jacobson I,
from le_antisymm (le_Inf $ λ M ⟨him, hm⟩, hm.is_prime.radical_le_iff.2 him)
(Inf_le ⟨le_radical, hi⟩),
⟨ne_top_of_lt $ lt_of_le_of_lt le_radical (lt_top_iff_ne_top.2 hi.1.1),
λ x y hxy, ((is_local_of_is_maximal_radical hi).mem_jacobson_or_exists_inv y).symm.imp
(λ ⟨z, hz⟩, by rw [← mul_one x, ← sub_sub_cancel (z * y) 1, mul_sub, mul_left_comm]; exact
I.sub_mem (I.mul_mem_left _ hxy) (I.mul_mem_left _ hz))
(this ▸ id)⟩
end ideal