Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Devon Tuma. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Kenny Lau, Devon Tuma | |
-/ | |
import ring_theory.ideal.quotient | |
import ring_theory.polynomial.basic | |
/-! | |
# Jacobson radical | |
The Jacobson radical of a ring `R` is defined to be the intersection of all maximal ideals of `R`. | |
This is similar to how the nilradical is equal to the intersection of all prime ideals of `R`. | |
We can extend the idea of the nilradical to ideals of `R`, | |
by letting the radical of an ideal `I` be the intersection of prime ideals containing `I`. | |
Under this extension, the original nilradical is the radical of the zero ideal `⊥`. | |
Here we define the Jacobson radical of an ideal `I` in a similar way, | |
as the intersection of maximal ideals containing `I`. | |
## Main definitions | |
Let `R` be a commutative ring, and `I` be an ideal of `R` | |
* `jacobson I` is the jacobson radical, i.e. the infimum of all maximal ideals containing I. | |
* `is_local I` is the proposition that the jacobson radical of `I` is itself a maximal ideal | |
## Main statements | |
* `mem_jacobson_iff` gives a characterization of members of the jacobson of I | |
* `is_local_of_is_maximal_radical`: if the radical of I is maximal then so is the jacobson radical | |
## Tags | |
Jacobson, Jacobson radical, Local Ideal | |
-/ | |
universes u v | |
namespace ideal | |
variables {R : Type u} {S : Type v} | |
open_locale polynomial | |
section jacobson | |
section ring | |
variables [ring R] [ring S] {I : ideal R} | |
/-- The Jacobson radical of `I` is the infimum of all maximal (left) ideals containing `I`. -/ | |
def jacobson (I : ideal R) : ideal R := | |
Inf {J : ideal R | I ≤ J ∧ is_maximal J} | |
lemma le_jacobson : I ≤ jacobson I := | |
λ x hx, mem_Inf.mpr (λ J hJ, hJ.left hx) | |
@[simp] lemma jacobson_idem : jacobson (jacobson I) = jacobson I := | |
le_antisymm (Inf_le_Inf (λ J hJ, ⟨Inf_le hJ, hJ.2⟩)) le_jacobson | |
@[simp] lemma jacobson_top : jacobson (⊤ : ideal R) = ⊤ := | |
eq_top_iff.2 le_jacobson | |
@[simp] theorem jacobson_eq_top_iff : jacobson I = ⊤ ↔ I = ⊤ := | |
⟨λ H, classical.by_contradiction $ λ hi, let ⟨M, hm, him⟩ := exists_le_maximal I hi in | |
lt_top_iff_ne_top.1 | |
(lt_of_le_of_lt (show jacobson I ≤ M, from Inf_le ⟨him, hm⟩) $ | |
lt_top_iff_ne_top.2 hm.ne_top) H, | |
λ H, eq_top_iff.2 $ le_Inf $ λ J ⟨hij, hj⟩, H ▸ hij⟩ | |
lemma jacobson_eq_bot : jacobson I = ⊥ → I = ⊥ := | |
λ h, eq_bot_iff.mpr (h ▸ le_jacobson) | |
lemma jacobson_eq_self_of_is_maximal [H : is_maximal I] : I.jacobson = I := | |
le_antisymm (Inf_le ⟨le_of_eq rfl, H⟩) le_jacobson | |
@[priority 100] | |
instance jacobson.is_maximal [H : is_maximal I] : is_maximal (jacobson I) := | |
⟨⟨λ htop, H.1.1 (jacobson_eq_top_iff.1 htop), | |
λ J hJ, H.1.2 _ (lt_of_le_of_lt le_jacobson hJ)⟩⟩ | |
theorem mem_jacobson_iff {x : R} : x ∈ jacobson I ↔ ∀ y, ∃ z, z * y * x + z - 1 ∈ I := | |
⟨λ hx y, classical.by_cases | |
(assume hxy : I ⊔ span {y * x + 1} = ⊤, | |
let ⟨p, hpi, q, hq, hpq⟩ := submodule.mem_sup.1 ((eq_top_iff_one _).1 hxy) in | |
let ⟨r, hr⟩ := mem_span_singleton'.1 hq in | |
⟨r, by rw [mul_assoc, ←mul_add_one, hr, ← hpq, ← neg_sub, add_sub_cancel]; exact I.neg_mem hpi⟩) | |
(assume hxy : I ⊔ span {y * x + 1} ≠ ⊤, | |
let ⟨M, hm1, hm2⟩ := exists_le_maximal _ hxy in | |
suffices x ∉ M, from (this $ mem_Inf.1 hx ⟨le_trans le_sup_left hm2, hm1⟩).elim, | |
λ hxm, hm1.1.1 $ (eq_top_iff_one _).2 $ add_sub_cancel' (y * x) 1 ▸ M.sub_mem | |
(le_sup_right.trans hm2 $ subset_span rfl) | |
(M.mul_mem_left _ hxm)), | |
λ hx, mem_Inf.2 $ λ M ⟨him, hm⟩, classical.by_contradiction $ λ hxm, | |
let ⟨y, i, hi, df⟩ := hm.exists_inv hxm, ⟨z, hz⟩ := hx (-y) in | |
hm.1.1 $ (eq_top_iff_one _).2 $ sub_sub_cancel (z * -y * x + z) 1 ▸ M.sub_mem | |
(by { rw [mul_assoc, ←mul_add_one, neg_mul, ← (sub_eq_iff_eq_add.mpr df.symm), neg_sub, | |
sub_add_cancel], | |
exact M.mul_mem_left _ hi }) (him hz)⟩ | |
lemma exists_mul_sub_mem_of_sub_one_mem_jacobson {I : ideal R} (r : R) | |
(h : r - 1 ∈ jacobson I) : ∃ s, s * r - 1 ∈ I := | |
begin | |
cases mem_jacobson_iff.1 h 1 with s hs, | |
use s, | |
simpa [mul_sub] using hs | |
end | |
/-- An ideal equals its Jacobson radical iff it is the intersection of a set of maximal ideals. | |
Allowing the set to include ⊤ is equivalent, and is included only to simplify some proofs. -/ | |
theorem eq_jacobson_iff_Inf_maximal : | |
I.jacobson = I ↔ ∃ M : set (ideal R), (∀ J ∈ M, is_maximal J ∨ J = ⊤) ∧ I = Inf M := | |
begin | |
use λ hI, ⟨{J : ideal R | I ≤ J ∧ J.is_maximal}, ⟨λ _ hJ, or.inl hJ.right, hI.symm⟩⟩, | |
rintros ⟨M, hM, hInf⟩, | |
refine le_antisymm (λ x hx, _) le_jacobson, | |
rw [hInf, mem_Inf], | |
intros I hI, | |
cases hM I hI with is_max is_top, | |
{ exact (mem_Inf.1 hx) ⟨le_Inf_iff.1 (le_of_eq hInf) I hI, is_max⟩ }, | |
{ exact is_top.symm ▸ submodule.mem_top } | |
end | |
theorem eq_jacobson_iff_Inf_maximal' : | |
I.jacobson = I ↔ ∃ M : set (ideal R), (∀ (J ∈ M) (K : ideal R), J < K → K = ⊤) ∧ I = Inf M := | |
eq_jacobson_iff_Inf_maximal.trans | |
⟨λ h, let ⟨M, hM⟩ := h in ⟨M, ⟨λ J hJ K hK, or.rec_on (hM.1 J hJ) (λ h, h.1.2 K hK) | |
(λ h, eq_top_iff.2 (le_of_lt (h ▸ hK))), hM.2⟩⟩, | |
λ h, let ⟨M, hM⟩ := h in ⟨M, ⟨λ J hJ, or.rec_on (classical.em (J = ⊤)) (λ h, or.inr h) | |
(λ h, or.inl ⟨⟨h, hM.1 J hJ⟩⟩), hM.2⟩⟩⟩ | |
/-- An ideal `I` equals its Jacobson radical if and only if every element outside `I` | |
also lies outside of a maximal ideal containing `I`. -/ | |
lemma eq_jacobson_iff_not_mem : | |
I.jacobson = I ↔ ∀ x ∉ I, ∃ M : ideal R, (I ≤ M ∧ M.is_maximal) ∧ x ∉ M := | |
begin | |
split, | |
{ intros h x hx, | |
erw [← h, mem_Inf] at hx, | |
push_neg at hx, | |
exact hx }, | |
{ refine λ h, le_antisymm (λ x hx, _) le_jacobson, | |
contrapose hx, | |
erw mem_Inf, | |
push_neg, | |
exact h x hx } | |
end | |
theorem map_jacobson_of_surjective {f : R →+* S} (hf : function.surjective f) : | |
ring_hom.ker f ≤ I → map f (I.jacobson) = (map f I).jacobson := | |
begin | |
intro h, | |
unfold ideal.jacobson, | |
have : ∀ J ∈ {J : ideal R | I ≤ J ∧ J.is_maximal}, f.ker ≤ J := λ J hJ, le_trans h hJ.left, | |
refine trans (map_Inf hf this) (le_antisymm _ _), | |
{ refine Inf_le_Inf (λ J hJ, ⟨comap f J, ⟨⟨le_comap_of_map_le hJ.1, _⟩, | |
map_comap_of_surjective f hf J⟩⟩), | |
haveI : J.is_maximal := hJ.right, | |
exact comap_is_maximal_of_surjective f hf }, | |
{ refine Inf_le_Inf_of_subset_insert_top (λ j hj, hj.rec_on (λ J hJ, _)), | |
rw ← hJ.2, | |
cases map_eq_top_or_is_maximal_of_surjective f hf hJ.left.right with htop hmax, | |
{ exact htop.symm ▸ set.mem_insert ⊤ _ }, | |
{ exact set.mem_insert_of_mem ⊤ ⟨map_mono hJ.1.1, hmax⟩ } }, | |
end | |
lemma map_jacobson_of_bijective {f : R →+* S} (hf : function.bijective f) : | |
map f (I.jacobson) = (map f I).jacobson := | |
map_jacobson_of_surjective hf.right | |
(le_trans (le_of_eq (f.injective_iff_ker_eq_bot.1 hf.left)) bot_le) | |
lemma comap_jacobson {f : R →+* S} {K : ideal S} : | |
comap f (K.jacobson) = Inf (comap f '' {J : ideal S | K ≤ J ∧ J.is_maximal}) := | |
trans (comap_Inf' f _) (Inf_eq_infi).symm | |
theorem comap_jacobson_of_surjective {f : R →+* S} (hf : function.surjective f) {K : ideal S} : | |
comap f (K.jacobson) = (comap f K).jacobson := | |
begin | |
unfold ideal.jacobson, | |
refine le_antisymm _ _, | |
{ refine le_trans (comap_mono (le_of_eq (trans top_inf_eq.symm Inf_insert.symm))) _, | |
rw [comap_Inf', Inf_eq_infi], | |
refine infi_le_infi_of_subset (λ J hJ, _), | |
have : comap f (map f J) = J := trans (comap_map_of_surjective f hf J) | |
(le_antisymm (sup_le_iff.2 ⟨le_of_eq rfl, le_trans (comap_mono bot_le) hJ.left⟩) le_sup_left), | |
cases map_eq_top_or_is_maximal_of_surjective _ hf hJ.right with htop hmax, | |
{ refine ⟨⊤, ⟨set.mem_insert ⊤ _, htop ▸ this⟩⟩ }, | |
{ refine ⟨map f J, ⟨set.mem_insert_of_mem _ | |
⟨le_map_of_comap_le_of_surjective f hf hJ.1, hmax⟩, this⟩⟩ } }, | |
{ rw comap_Inf, | |
refine le_infi_iff.2 (λ J, (le_infi_iff.2 (λ hJ, _))), | |
haveI : J.is_maximal := hJ.right, | |
refine Inf_le ⟨comap_mono hJ.left, comap_is_maximal_of_surjective _ hf⟩ } | |
end | |
@[mono] lemma jacobson_mono {I J : ideal R} : I ≤ J → I.jacobson ≤ J.jacobson := | |
begin | |
intros h x hx, | |
erw mem_Inf at ⊢ hx, | |
exact λ K ⟨hK, hK_max⟩, hx ⟨trans h hK, hK_max⟩ | |
end | |
end ring | |
section comm_ring | |
variables [comm_ring R] [comm_ring S] {I : ideal R} | |
lemma radical_le_jacobson : radical I ≤ jacobson I := | |
le_Inf (λ J hJ, (radical_eq_Inf I).symm ▸ Inf_le ⟨hJ.left, is_maximal.is_prime hJ.right⟩) | |
lemma eq_radical_of_eq_jacobson : jacobson I = I → radical I = I := | |
λ h, le_antisymm (le_trans radical_le_jacobson (le_of_eq h)) le_radical | |
lemma is_unit_of_sub_one_mem_jacobson_bot (r : R) | |
(h : r - 1 ∈ jacobson (⊥ : ideal R)) : is_unit r := | |
begin | |
cases exists_mul_sub_mem_of_sub_one_mem_jacobson r h with s hs, | |
rw [mem_bot, sub_eq_zero, mul_comm] at hs, | |
exact is_unit_of_mul_eq_one _ _ hs | |
end | |
lemma mem_jacobson_bot {x : R} : x ∈ jacobson (⊥ : ideal R) ↔ ∀ y, is_unit (x * y + 1) := | |
⟨λ hx y, let ⟨z, hz⟩ := (mem_jacobson_iff.1 hx) y in | |
is_unit_iff_exists_inv.2 ⟨z, by rwa [add_mul, one_mul, ← sub_eq_zero, mul_right_comm, | |
mul_comm _ z, mul_right_comm]⟩, | |
λ h, mem_jacobson_iff.mpr (λ y, (let ⟨b, hb⟩ := is_unit_iff_exists_inv.1 (h y) in | |
⟨b, (submodule.mem_bot R).2 (hb ▸ (by ring))⟩))⟩ | |
/-- An ideal `I` of `R` is equal to its Jacobson radical if and only if | |
the Jacobson radical of the quotient ring `R/I` is the zero ideal -/ | |
theorem jacobson_eq_iff_jacobson_quotient_eq_bot : | |
I.jacobson = I ↔ jacobson (⊥ : ideal (R ⧸ I)) = ⊥ := | |
begin | |
have hf : function.surjective (quotient.mk I) := submodule.quotient.mk_surjective I, | |
split, | |
{ intro h, | |
replace h := congr_arg (map (quotient.mk I)) h, | |
rw map_jacobson_of_surjective hf (le_of_eq mk_ker) at h, | |
simpa using h }, | |
{ intro h, | |
replace h := congr_arg (comap (quotient.mk I)) h, | |
rw [comap_jacobson_of_surjective hf, ← (quotient.mk I).ker_eq_comap_bot] at h, | |
simpa using h } | |
end | |
/-- The standard radical and Jacobson radical of an ideal `I` of `R` are equal if and only if | |
the nilradical and Jacobson radical of the quotient ring `R/I` coincide -/ | |
theorem radical_eq_jacobson_iff_radical_quotient_eq_jacobson_bot : | |
I.radical = I.jacobson ↔ radical (⊥ : ideal (R ⧸ I)) = jacobson ⊥ := | |
begin | |
have hf : function.surjective (quotient.mk I) := submodule.quotient.mk_surjective I, | |
split, | |
{ intro h, | |
have := congr_arg (map (quotient.mk I)) h, | |
rw [map_radical_of_surjective hf (le_of_eq mk_ker), | |
map_jacobson_of_surjective hf (le_of_eq mk_ker)] at this, | |
simpa using this }, | |
{ intro h, | |
have := congr_arg (comap (quotient.mk I)) h, | |
rw [comap_radical, comap_jacobson_of_surjective hf, ← (quotient.mk I).ker_eq_comap_bot] at this, | |
simpa using this } | |
end | |
lemma jacobson_radical_eq_jacobson : | |
I.radical.jacobson = I.jacobson := | |
le_antisymm (le_trans (le_of_eq (congr_arg jacobson (radical_eq_Inf I))) | |
(Inf_le_Inf (λ J hJ, ⟨Inf_le ⟨hJ.1, hJ.2.is_prime⟩, hJ.2⟩))) (jacobson_mono le_radical) | |
end comm_ring | |
end jacobson | |
section polynomial | |
open polynomial | |
variables [comm_ring R] | |
lemma jacobson_bot_polynomial_le_Inf_map_maximal : | |
jacobson (⊥ : ideal R[X]) ≤ Inf (map (C : R →+* R[X]) '' {J : ideal R | J.is_maximal}) := | |
begin | |
refine le_Inf (λ J, exists_imp_distrib.2 (λ j hj, _)), | |
haveI : j.is_maximal := hj.1, | |
refine trans (jacobson_mono bot_le) (le_of_eq _ : J.jacobson ≤ J), | |
suffices : (⊥ : ideal (polynomial (R ⧸ j))).jacobson = ⊥, | |
{ rw [← hj.2, jacobson_eq_iff_jacobson_quotient_eq_bot], | |
replace this := | |
congr_arg (map (polynomial_quotient_equiv_quotient_polynomial j).to_ring_hom) this, | |
rwa [map_jacobson_of_bijective _, map_bot] at this, | |
exact (ring_equiv.bijective (polynomial_quotient_equiv_quotient_polynomial j)) }, | |
refine eq_bot_iff.2 (λ f hf, _), | |
simpa [(λ hX, by simpa using congr_arg (λ f, coeff f 1) hX : (X : (R ⧸ j)[X]) ≠ 0)] | |
using eq_C_of_degree_eq_zero (degree_eq_zero_of_is_unit ((mem_jacobson_bot.1 hf) X)), | |
end | |
lemma jacobson_bot_polynomial_of_jacobson_bot (h : jacobson (⊥ : ideal R) = ⊥) : | |
jacobson (⊥ : ideal R[X]) = ⊥ := | |
begin | |
refine eq_bot_iff.2 (le_trans jacobson_bot_polynomial_le_Inf_map_maximal _), | |
refine (λ f hf, ((submodule.mem_bot _).2 (polynomial.ext (λ n, trans _ (coeff_zero n).symm)))), | |
suffices : f.coeff n ∈ ideal.jacobson ⊥, by rwa [h, submodule.mem_bot] at this, | |
exact mem_Inf.2 (λ j hj, (mem_map_C_iff.1 ((mem_Inf.1 hf) ⟨j, ⟨hj.2, rfl⟩⟩)) n), | |
end | |
end polynomial | |
section is_local | |
variables [comm_ring R] | |
/-- An ideal `I` is local iff its Jacobson radical is maximal. -/ | |
class is_local (I : ideal R) : Prop := (out : is_maximal (jacobson I)) | |
theorem is_local_iff {I : ideal R} : is_local I ↔ is_maximal (jacobson I) := | |
⟨λ h, h.1, λ h, ⟨h⟩⟩ | |
theorem is_local_of_is_maximal_radical {I : ideal R} (hi : is_maximal (radical I)) : is_local I := | |
⟨have radical I = jacobson I, | |
from le_antisymm (le_Inf $ λ M ⟨him, hm⟩, hm.is_prime.radical_le_iff.2 him) | |
(Inf_le ⟨le_radical, hi⟩), | |
show is_maximal (jacobson I), from this ▸ hi⟩ | |
theorem is_local.le_jacobson {I J : ideal R} (hi : is_local I) (hij : I ≤ J) (hj : J ≠ ⊤) : | |
J ≤ jacobson I := | |
let ⟨M, hm, hjm⟩ := exists_le_maximal J hj in | |
le_trans hjm $ le_of_eq $ eq.symm $ hi.1.eq_of_le hm.1.1 $ Inf_le ⟨le_trans hij hjm, hm⟩ | |
theorem is_local.mem_jacobson_or_exists_inv {I : ideal R} (hi : is_local I) (x : R) : | |
x ∈ jacobson I ∨ ∃ y, y * x - 1 ∈ I := | |
classical.by_cases | |
(assume h : I ⊔ span {x} = ⊤, | |
let ⟨p, hpi, q, hq, hpq⟩ := submodule.mem_sup.1 ((eq_top_iff_one _).1 h) in | |
let ⟨r, hr⟩ := mem_span_singleton.1 hq in | |
or.inr ⟨r, by rw [← hpq, mul_comm, ← hr, ← neg_sub, add_sub_cancel]; exact I.neg_mem hpi⟩) | |
(assume h : I ⊔ span {x} ≠ ⊤, | |
or.inl $ le_trans le_sup_right (hi.le_jacobson le_sup_left h) $ mem_span_singleton.2 $ | |
dvd_refl x) | |
end is_local | |
theorem is_primary_of_is_maximal_radical [comm_ring R] {I : ideal R} (hi : is_maximal (radical I)) : | |
is_primary I := | |
have radical I = jacobson I, | |
from le_antisymm (le_Inf $ λ M ⟨him, hm⟩, hm.is_prime.radical_le_iff.2 him) | |
(Inf_le ⟨le_radical, hi⟩), | |
⟨ne_top_of_lt $ lt_of_le_of_lt le_radical (lt_top_iff_ne_top.2 hi.1.1), | |
λ x y hxy, ((is_local_of_is_maximal_radical hi).mem_jacobson_or_exists_inv y).symm.imp | |
(λ ⟨z, hz⟩, by rw [← mul_one x, ← sub_sub_cancel (z * y) 1, mul_sub, mul_left_comm]; exact | |
I.sub_mem (I.mul_mem_left _ hxy) (I.mul_mem_left _ hz)) | |
(this ▸ id)⟩ | |
end ideal | |