Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /lean /mathlib /ring_theory /integral_domain.lean
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
8.25 kB
/-
Copyright (c) 2020 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin, Chris Hughes
-/
import data.fintype.card
import data.polynomial.ring_division
import group_theory.specific_groups.cyclic
import algebra.geom_sum
/-!
# Integral domains
Assorted theorems about integral domains.
## Main theorems
* `is_cyclic_of_subgroup_is_domain`: A finite subgroup of the units of an integral domain is cyclic.
* `fintype.field_of_domain`: A finite integral domain is a field.
## TODO
Prove Wedderburn's little theorem, which shows that all finite division rings are actually fields.
## Tags
integral domain, finite integral domain, finite field
-/
section
open finset polynomial function
open_locale big_operators nat
section cancel_monoid_with_zero
-- There doesn't seem to be a better home for these right now
variables {M : Type*} [cancel_monoid_with_zero M] [fintype M]
lemma mul_right_bijective_of_fintype₀ {a : M} (ha : a ≠ 0) : bijective (λ b, a * b) :=
fintype.injective_iff_bijective.1 $ mul_right_injective₀ ha
lemma mul_left_bijective_of_fintype₀ {a : M} (ha : a ≠ 0) : bijective (λ b, b * a) :=
fintype.injective_iff_bijective.1 $ mul_left_injective₀ ha
/-- Every finite nontrivial cancel_monoid_with_zero is a group_with_zero. -/
def fintype.group_with_zero_of_cancel (M : Type*) [cancel_monoid_with_zero M] [decidable_eq M]
[fintype M] [nontrivial M] : group_with_zero M :=
{ inv := λ a, if h : a = 0 then 0 else fintype.bij_inv (mul_right_bijective_of_fintype₀ h) 1,
mul_inv_cancel := λ a ha,
by { simp [has_inv.inv, dif_neg ha], exact fintype.right_inverse_bij_inv _ _ },
inv_zero := by { simp [has_inv.inv, dif_pos rfl] },
..‹nontrivial M›,
..‹cancel_monoid_with_zero M› }
end cancel_monoid_with_zero
variables {R : Type*} {G : Type*}
section ring
variables [ring R] [is_domain R] [fintype R]
/-- Every finite domain is a division ring.
TODO: Prove Wedderburn's little theorem,
which shows a finite domain is in fact commutative, hence a field. -/
def fintype.division_ring_of_is_domain (R : Type*) [ring R] [is_domain R] [decidable_eq R]
[fintype R] : division_ring R :=
{ ..show group_with_zero R, from fintype.group_with_zero_of_cancel R,
..‹ring R› }
/-- Every finite commutative domain is a field.
TODO: Prove Wedderburn's little theorem, which shows a finite domain is automatically commutative,
dropping one assumption from this theorem. -/
def fintype.field_of_domain (R) [comm_ring R] [is_domain R] [decidable_eq R] [fintype R] :
field R :=
{ .. fintype.group_with_zero_of_cancel R,
.. ‹comm_ring R› }
lemma fintype.is_field_of_domain (R) [comm_ring R] [is_domain R] [fintype R] :
is_field R := @field.to_is_field R $ @@fintype.field_of_domain R _ _ (classical.dec_eq R) _
end ring
variables [comm_ring R] [is_domain R] [group G] [fintype G]
lemma card_nth_roots_subgroup_units (f : G →* R) (hf : injective f) {n : ℕ} (hn : 0 < n) (g₀ : G) :
({g ∈ univ | g ^ n = g₀} : finset G).card ≤ (nth_roots n (f g₀)).card :=
begin
haveI : decidable_eq R := classical.dec_eq _,
refine le_trans _ (nth_roots n (f g₀)).to_finset_card_le,
apply card_le_card_of_inj_on f,
{ intros g hg,
rw [sep_def, mem_filter] at hg,
rw [multiset.mem_to_finset, mem_nth_roots hn, ← f.map_pow, hg.2] },
{ intros, apply hf, assumption }
end
/-- A finite subgroup of the unit group of an integral domain is cyclic. -/
lemma is_cyclic_of_subgroup_is_domain (f : G →* R) (hf : injective f) : is_cyclic G :=
begin
classical,
apply is_cyclic_of_card_pow_eq_one_le,
intros n hn,
convert (le_trans (card_nth_roots_subgroup_units f hf hn 1) (card_nth_roots n (f 1)))
end
/-- The unit group of a finite integral domain is cyclic.
To support `ℤˣ` and other infinite monoids with finite groups of units, this requires only
`fintype Rˣ` rather than deducing it from `fintype R`. -/
instance [fintype Rˣ] : is_cyclic Rˣ :=
is_cyclic_of_subgroup_is_domain (units.coe_hom R) $ units.ext
section
variables (S : subgroup Rˣ) [fintype S]
/-- A finite subgroup of the units of an integral domain is cyclic. -/
instance subgroup_units_cyclic : is_cyclic S :=
begin
refine is_cyclic_of_subgroup_is_domain ⟨(coe : SR), _, _⟩
(units.ext.comp subtype.val_injective),
{ simp },
{ intros, simp },
end
end
lemma card_fiber_eq_of_mem_range {H : Type*} [group H] [decidable_eq H]
(f : G →* H) {x y : H} (hx : x ∈ set.range f) (hy : y ∈ set.range f) :
(univ.filter $ λ g, f g = x).card = (univ.filter $ λ g, f g = y).card :=
begin
rcases hx with ⟨x, rfl⟩,
rcases hy with ⟨y, rfl⟩,
refine card_congr (λ g _, g * x⁻¹ * y) _ _ (λ g hg, ⟨g * y⁻¹ * x, _⟩),
{ simp only [mem_filter, one_mul, monoid_hom.map_mul, mem_univ, mul_right_inv,
eq_self_iff_true, monoid_hom.map_mul_inv, and_self, forall_true_iff] {contextual := tt} },
{ simp only [mul_left_inj, imp_self, forall_2_true_iff], },
{ simp only [true_and, mem_filter, mem_univ] at hg,
simp only [hg, mem_filter, one_mul, monoid_hom.map_mul, mem_univ, mul_right_inv,
eq_self_iff_true, exists_prop_of_true, monoid_hom.map_mul_inv, and_self,
mul_inv_cancel_right, inv_mul_cancel_right], }
end
/-- In an integral domain, a sum indexed by a nontrivial homomorphism from a finite group is zero.
-/
lemma sum_hom_units_eq_zero (f : G →* R) (hf : f ≠ 1) : ∑ g : G, f g = 0 :=
begin
classical,
obtain ⟨x, hx⟩ : ∃ x : monoid_hom.range f.to_hom_units,
∀ y : monoid_hom.range f.to_hom_units, y ∈ submonoid.powers x,
from is_cyclic.exists_monoid_generator,
have hx1 : x ≠ 1,
{ rintro rfl,
apply hf,
ext g,
rw [monoid_hom.one_apply],
cases hx ⟨f.to_hom_units g, g, rfl⟩ with n hn,
rwa [subtype.ext_iff, units.ext_iff, subtype.coe_mk, monoid_hom.coe_to_hom_units,
one_pow, eq_comm] at hn, },
replace hx1 : (x : R) - 10,
from λ h, hx1 (subtype.eq (units.ext (sub_eq_zero.1 h))),
let c := (univ.filter (λ g, f.to_hom_units g = 1)).card,
calc ∑ g : G, f g
= ∑ g : G, f.to_hom_units g : rfl
... = ∑ u : Rˣ in univ.image f.to_hom_units,
(univ.filter (λ g, f.to_hom_units g = u)).card • u : sum_comp (coe : Rˣ → R) f.to_hom_units
... = ∑ u : Rˣ in univ.image f.to_hom_units, c • u :
sum_congr rfl (λ u hu, congr_arg2 _ _ rfl) -- remaining goal 1, proven below
... = ∑ b : monoid_hom.range f.to_hom_units, c • ↑b : finset.sum_subtype _
(by simp ) _
... = c • ∑ b : monoid_hom.range f.to_hom_units, (b : R) : smul_sum.symm
... = c • 0 : congr_arg2 _ rfl _ -- remaining goal 2, proven below
... = 0 : smul_zero _,
{ -- remaining goal 1
show (univ.filter (λ (g : G), f.to_hom_units g = u)).card = c,
apply card_fiber_eq_of_mem_range f.to_hom_units,
{ simpa only [mem_image, mem_univ, exists_prop_of_true, set.mem_range] using hu, },
{ exact ⟨1, f.to_hom_units.map_one⟩ } },
-- remaining goal 2
show ∑ b : monoid_hom.range f.to_hom_units, (b : R) = 0,
calc ∑ b : monoid_hom.range f.to_hom_units, (b : R)
= ∑ n in range (order_of x), x ^ n :
eq.symm $ sum_bij (λ n _, x ^ n)
(by simp only [mem_univ, forall_true_iff])
(by simp only [implies_true_iff, eq_self_iff_true, subgroup.coe_pow, units.coe_pow, coe_coe])
(λ m n hm hn, pow_injective_of_lt_order_of _
(by simpa only [mem_range] using hm)
(by simpa only [mem_range] using hn))
(λ b hb, let ⟨n, hn⟩ := hx b in ⟨n % order_of x, mem_range.2 (nat.mod_lt _ (order_of_pos _)),
by rw [← pow_eq_mod_order_of, hn]⟩)
... = 0 : _,
rw [← mul_left_inj' hx1, zero_mul, geom_sum_mul, coe_coe],
norm_cast,
simp [pow_order_of_eq_one],
end
/-- In an integral domain, a sum indexed by a homomorphism from a finite group is zero,
unless the homomorphism is trivial, in which case the sum is equal to the cardinality of the group.
-/
lemma sum_hom_units (f : G →* R) [decidable (f = 1)] :
∑ g : G, f g = if f = 1 then fintype.card G else 0 :=
begin
split_ifs with h h,
{ simp [h, card_univ] },
{ exact sum_hom_units_eq_zero f h }
end
end