/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Chris Hughes -/ import data.fintype.card import data.polynomial.ring_division import group_theory.specific_groups.cyclic import algebra.geom_sum /-! # Integral domains Assorted theorems about integral domains. ## Main theorems * `is_cyclic_of_subgroup_is_domain`: A finite subgroup of the units of an integral domain is cyclic. * `fintype.field_of_domain`: A finite integral domain is a field. ## TODO Prove Wedderburn's little theorem, which shows that all finite division rings are actually fields. ## Tags integral domain, finite integral domain, finite field -/ section open finset polynomial function open_locale big_operators nat section cancel_monoid_with_zero -- There doesn't seem to be a better home for these right now variables {M : Type*} [cancel_monoid_with_zero M] [fintype M] lemma mul_right_bijective_of_fintype₀ {a : M} (ha : a ≠ 0) : bijective (λ b, a * b) := fintype.injective_iff_bijective.1 $ mul_right_injective₀ ha lemma mul_left_bijective_of_fintype₀ {a : M} (ha : a ≠ 0) : bijective (λ b, b * a) := fintype.injective_iff_bijective.1 $ mul_left_injective₀ ha /-- Every finite nontrivial cancel_monoid_with_zero is a group_with_zero. -/ def fintype.group_with_zero_of_cancel (M : Type*) [cancel_monoid_with_zero M] [decidable_eq M] [fintype M] [nontrivial M] : group_with_zero M := { inv := λ a, if h : a = 0 then 0 else fintype.bij_inv (mul_right_bijective_of_fintype₀ h) 1, mul_inv_cancel := λ a ha, by { simp [has_inv.inv, dif_neg ha], exact fintype.right_inverse_bij_inv _ _ }, inv_zero := by { simp [has_inv.inv, dif_pos rfl] }, ..‹nontrivial M›, ..‹cancel_monoid_with_zero M› } end cancel_monoid_with_zero variables {R : Type*} {G : Type*} section ring variables [ring R] [is_domain R] [fintype R] /-- Every finite domain is a division ring. TODO: Prove Wedderburn's little theorem, which shows a finite domain is in fact commutative, hence a field. -/ def fintype.division_ring_of_is_domain (R : Type*) [ring R] [is_domain R] [decidable_eq R] [fintype R] : division_ring R := { ..show group_with_zero R, from fintype.group_with_zero_of_cancel R, ..‹ring R› } /-- Every finite commutative domain is a field. TODO: Prove Wedderburn's little theorem, which shows a finite domain is automatically commutative, dropping one assumption from this theorem. -/ def fintype.field_of_domain (R) [comm_ring R] [is_domain R] [decidable_eq R] [fintype R] : field R := { .. fintype.group_with_zero_of_cancel R, .. ‹comm_ring R› } lemma fintype.is_field_of_domain (R) [comm_ring R] [is_domain R] [fintype R] : is_field R := @field.to_is_field R $ @@fintype.field_of_domain R _ _ (classical.dec_eq R) _ end ring variables [comm_ring R] [is_domain R] [group G] [fintype G] lemma card_nth_roots_subgroup_units (f : G →* R) (hf : injective f) {n : ℕ} (hn : 0 < n) (g₀ : G) : ({g ∈ univ | g ^ n = g₀} : finset G).card ≤ (nth_roots n (f g₀)).card := begin haveI : decidable_eq R := classical.dec_eq _, refine le_trans _ (nth_roots n (f g₀)).to_finset_card_le, apply card_le_card_of_inj_on f, { intros g hg, rw [sep_def, mem_filter] at hg, rw [multiset.mem_to_finset, mem_nth_roots hn, ← f.map_pow, hg.2] }, { intros, apply hf, assumption } end /-- A finite subgroup of the unit group of an integral domain is cyclic. -/ lemma is_cyclic_of_subgroup_is_domain (f : G →* R) (hf : injective f) : is_cyclic G := begin classical, apply is_cyclic_of_card_pow_eq_one_le, intros n hn, convert (le_trans (card_nth_roots_subgroup_units f hf hn 1) (card_nth_roots n (f 1))) end /-- The unit group of a finite integral domain is cyclic. To support `ℤˣ` and other infinite monoids with finite groups of units, this requires only `fintype Rˣ` rather than deducing it from `fintype R`. -/ instance [fintype Rˣ] : is_cyclic Rˣ := is_cyclic_of_subgroup_is_domain (units.coe_hom R) $ units.ext section variables (S : subgroup Rˣ) [fintype S] /-- A finite subgroup of the units of an integral domain is cyclic. -/ instance subgroup_units_cyclic : is_cyclic S := begin refine is_cyclic_of_subgroup_is_domain ⟨(coe : S → R), _, _⟩ (units.ext.comp subtype.val_injective), { simp }, { intros, simp }, end end lemma card_fiber_eq_of_mem_range {H : Type*} [group H] [decidable_eq H] (f : G →* H) {x y : H} (hx : x ∈ set.range f) (hy : y ∈ set.range f) : (univ.filter $ λ g, f g = x).card = (univ.filter $ λ g, f g = y).card := begin rcases hx with ⟨x, rfl⟩, rcases hy with ⟨y, rfl⟩, refine card_congr (λ g _, g * x⁻¹ * y) _ _ (λ g hg, ⟨g * y⁻¹ * x, _⟩), { simp only [mem_filter, one_mul, monoid_hom.map_mul, mem_univ, mul_right_inv, eq_self_iff_true, monoid_hom.map_mul_inv, and_self, forall_true_iff] {contextual := tt} }, { simp only [mul_left_inj, imp_self, forall_2_true_iff], }, { simp only [true_and, mem_filter, mem_univ] at hg, simp only [hg, mem_filter, one_mul, monoid_hom.map_mul, mem_univ, mul_right_inv, eq_self_iff_true, exists_prop_of_true, monoid_hom.map_mul_inv, and_self, mul_inv_cancel_right, inv_mul_cancel_right], } end /-- In an integral domain, a sum indexed by a nontrivial homomorphism from a finite group is zero. -/ lemma sum_hom_units_eq_zero (f : G →* R) (hf : f ≠ 1) : ∑ g : G, f g = 0 := begin classical, obtain ⟨x, hx⟩ : ∃ x : monoid_hom.range f.to_hom_units, ∀ y : monoid_hom.range f.to_hom_units, y ∈ submonoid.powers x, from is_cyclic.exists_monoid_generator, have hx1 : x ≠ 1, { rintro rfl, apply hf, ext g, rw [monoid_hom.one_apply], cases hx ⟨f.to_hom_units g, g, rfl⟩ with n hn, rwa [subtype.ext_iff, units.ext_iff, subtype.coe_mk, monoid_hom.coe_to_hom_units, one_pow, eq_comm] at hn, }, replace hx1 : (x : R) - 1 ≠ 0, from λ h, hx1 (subtype.eq (units.ext (sub_eq_zero.1 h))), let c := (univ.filter (λ g, f.to_hom_units g = 1)).card, calc ∑ g : G, f g = ∑ g : G, f.to_hom_units g : rfl ... = ∑ u : Rˣ in univ.image f.to_hom_units, (univ.filter (λ g, f.to_hom_units g = u)).card • u : sum_comp (coe : Rˣ → R) f.to_hom_units ... = ∑ u : Rˣ in univ.image f.to_hom_units, c • u : sum_congr rfl (λ u hu, congr_arg2 _ _ rfl) -- remaining goal 1, proven below ... = ∑ b : monoid_hom.range f.to_hom_units, c • ↑b : finset.sum_subtype _ (by simp ) _ ... = c • ∑ b : monoid_hom.range f.to_hom_units, (b : R) : smul_sum.symm ... = c • 0 : congr_arg2 _ rfl _ -- remaining goal 2, proven below ... = 0 : smul_zero _, { -- remaining goal 1 show (univ.filter (λ (g : G), f.to_hom_units g = u)).card = c, apply card_fiber_eq_of_mem_range f.to_hom_units, { simpa only [mem_image, mem_univ, exists_prop_of_true, set.mem_range] using hu, }, { exact ⟨1, f.to_hom_units.map_one⟩ } }, -- remaining goal 2 show ∑ b : monoid_hom.range f.to_hom_units, (b : R) = 0, calc ∑ b : monoid_hom.range f.to_hom_units, (b : R) = ∑ n in range (order_of x), x ^ n : eq.symm $ sum_bij (λ n _, x ^ n) (by simp only [mem_univ, forall_true_iff]) (by simp only [implies_true_iff, eq_self_iff_true, subgroup.coe_pow, units.coe_pow, coe_coe]) (λ m n hm hn, pow_injective_of_lt_order_of _ (by simpa only [mem_range] using hm) (by simpa only [mem_range] using hn)) (λ b hb, let ⟨n, hn⟩ := hx b in ⟨n % order_of x, mem_range.2 (nat.mod_lt _ (order_of_pos _)), by rw [← pow_eq_mod_order_of, hn]⟩) ... = 0 : _, rw [← mul_left_inj' hx1, zero_mul, geom_sum_mul, coe_coe], norm_cast, simp [pow_order_of_eq_one], end /-- In an integral domain, a sum indexed by a homomorphism from a finite group is zero, unless the homomorphism is trivial, in which case the sum is equal to the cardinality of the group. -/ lemma sum_hom_units (f : G →* R) [decidable (f = 1)] : ∑ g : G, f g = if f = 1 then fintype.card G else 0 := begin split_ifs with h h, { simp [h, card_univ] }, { exact sum_hom_units_eq_zero f h } end end