Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Johan Commelin. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johan Commelin | |
-/ | |
import data.polynomial.taylor | |
import ring_theory.ideal.local_ring | |
import linear_algebra.adic_completion | |
/-! | |
# Henselian rings | |
In this file we set up the basic theory of Henselian (local) rings. | |
A ring `R` is *Henselian* at an ideal `I` if the following conditions hold: | |
* `I` is contained in the Jacobson radical of `R` | |
* for every polynomial `f` over `R`, with a *simple* root `aβ` over the quotient ring `R/I`, | |
there exists a lift `a : R` of `aβ` that is a root of `f`. | |
(Here, saying that a root `b` of a polynomial `g` is *simple* means that `g.derivative.eval b` is a | |
unit. Warning: if `R/I` is not a field then it is not enough to assume that `g` has a factorization | |
into monic linear factors in which `X - b` shows up only once; for example `1` is not a simple root | |
of `X^2-1` over `β€/4β€`.) | |
A local ring `R` is *Henselian* if it is Henselian at its maximal ideal. | |
In this case the first condition is automatic, and in the second condition we may ask for | |
`f.derivative.eval a β 0`, since the quotient ring `R/I` is a field in this case. | |
## Main declarations | |
* `henselian_ring`: a typeclass on commutative rings, | |
asserting that the ring is Henselian at the ideal `I`. | |
* `henselian_local_ring`: a typeclass on commutative rings, | |
asserting that the ring is local Henselian. | |
* `field.henselian`: fields are Henselian local rings | |
* `henselian.tfae`: equivalent ways of expressing the Henselian property for local rings | |
* `is_adic_complete.henselian`: | |
a ring `R` with ideal `I` that is `I`-adically complete is Henselian at `I` | |
## References | |
https://stacks.math.columbia.edu/tag/04GE | |
## Todo | |
After a good API for etale ring homomorphisms has been developed, | |
we can give more equivalent characterization os Henselian rings. | |
In particular, this can give a proof that factorizations into coprime polynomials can be lifted | |
from the residue field to the Henselian ring. | |
The following gist contains some code sketches in that direction. | |
https://gist.github.com/jcommelin/47d94e4af092641017a97f7f02bf9598 | |
-/ | |
noncomputable theory | |
universes u v | |
open_locale big_operators polynomial | |
open local_ring polynomial function | |
lemma is_local_ring_hom_of_le_jacobson_bot {R : Type*} [comm_ring R] | |
(I : ideal R) (h : I β€ ideal.jacobson β₯) : | |
is_local_ring_hom (ideal.quotient.mk I) := | |
begin | |
constructor, | |
intros a h, | |
have : is_unit (ideal.quotient.mk (ideal.jacobson β₯) a), | |
{ rw [is_unit_iff_exists_inv] at *, | |
obtain β¨b, hbβ© := h, | |
obtain β¨b, rflβ© := ideal.quotient.mk_surjective b, | |
use ideal.quotient.mk _ b, | |
rw [β(ideal.quotient.mk _).map_one, β(ideal.quotient.mk _).map_mul, ideal.quotient.eq] at β’ hb, | |
exact h hb }, | |
obtain β¨β¨x, y, h1, h2β©, rfl : x = _β© := this, | |
obtain β¨y, rflβ© := ideal.quotient.mk_surjective y, | |
rw [β (ideal.quotient.mk _).map_mul, β (ideal.quotient.mk _).map_one, ideal.quotient.eq, | |
ideal.mem_jacobson_bot] at h1 h2, | |
specialize h1 1, | |
simp at h1, | |
exact h1.1, | |
end | |
/-- A ring `R` is *Henselian* at an ideal `I` if the following condition holds: | |
for every polynomial `f` over `R`, with a *simple* root `aβ` over the quotient ring `R/I`, | |
there exists a lift `a : R` of `aβ` that is a root of `f`. | |
(Here, saying that a root `b` of a polynomial `g` is *simple* means that `g.derivative.eval b` is a | |
unit. Warning: if `R/I` is not a field then it is not enough to assume that `g` has a factorization | |
into monic linear factors in which `X - b` shows up only once; for example `1` is not a simple root | |
of `X^2-1` over `β€/4β€`.) -/ | |
class henselian_ring (R : Type*) [comm_ring R] (I : ideal R) : Prop := | |
(jac : I β€ ideal.jacobson β₯) | |
(is_henselian : β (f : R[X]) (hf : f.monic) (aβ : R) (hβ : f.eval aβ β I) | |
(hβ : is_unit (ideal.quotient.mk I (f.derivative.eval aβ))), | |
β a : R, f.is_root a β§ (a - aβ β I)) | |
/-- A local ring `R` is *Henselian* if the following condition holds: | |
for every polynomial `f` over `R`, with a *simple* root `aβ` over the residue field, | |
there exists a lift `a : R` of `aβ` that is a root of `f`. | |
(Recall that a root `b` of a polynomial `g` is *simple* if it is not a double root, so if | |
`g.derivative.eval b β 0`.) | |
In other words, `R` is local Henselian if it is Henselian at the ideal `I`, | |
in the sense of `henselian_ring`. -/ | |
class henselian_local_ring (R : Type*) [comm_ring R] extends local_ring R : Prop := | |
(is_henselian : β (f : R[X]) (hf : f.monic) (aβ : R) (hβ : f.eval aβ β maximal_ideal R) | |
(hβ : is_unit (f.derivative.eval aβ)), | |
β a : R, f.is_root a β§ (a - aβ β maximal_ideal R)) | |
@[priority 100] -- see Note [lower instance priority] | |
instance field.henselian (K : Type*) [field K] : henselian_local_ring K := | |
{ is_henselian := Ξ» f hf aβ hβ hβ, | |
begin | |
refine β¨aβ, _, _β©; | |
rwa [(maximal_ideal K).eq_bot_of_prime, ideal.mem_bot] at *, | |
rw sub_self, | |
end } | |
lemma henselian_local_ring.tfae (R : Type u) [comm_ring R] [local_ring R] : | |
tfae [ | |
henselian_local_ring R, | |
β (f : R[X]) (hf : f.monic) (aβ : residue_field R) (hβ : aeval aβ f = 0) | |
(hβ : aeval aβ f.derivative β 0), | |
β a : R, f.is_root a β§ (residue R a = aβ), | |
β {K : Type u} [field K], by exactI β (Ο : R β+* K) (hΟ : surjective Ο) | |
(f : R[X]) (hf : f.monic) (aβ : K) (hβ : f.evalβ Ο aβ = 0) | |
(hβ : f.derivative.evalβ Ο aβ β 0), | |
β a : R, f.is_root a β§ (Ο a = aβ)] := | |
begin | |
tfae_have _3_2 : 3 β 2, { intro H, exact H (residue R) ideal.quotient.mk_surjective, }, | |
tfae_have _2_1 : 2 β 1, | |
{ intros H, constructor, intros f hf aβ hβ hβ, | |
specialize H f hf (residue R aβ), | |
have aux := flip mem_nonunits_iff.mp hβ, | |
simp only [aeval_def, ring_hom.algebra_map_to_algebra, evalβ_at_apply, | |
β ideal.quotient.eq_zero_iff_mem, β local_ring.mem_maximal_ideal] at H hβ aux, | |
obtain β¨a, haβ, haββ© := H hβ aux, | |
refine β¨a, haβ, _β©, | |
rw β ideal.quotient.eq_zero_iff_mem, | |
rwa [β sub_eq_zero, β ring_hom.map_sub] at haβ, }, | |
tfae_have _1_3 : 1 β 3, | |
{ introsI hR K _K Ο hΟ f hf aβ hβ hβ, | |
obtain β¨aβ, rflβ© := hΟ aβ, | |
have H := henselian_local_ring.is_henselian f hf aβ, | |
simp only [β ker_eq_maximal_ideal Ο hΟ, evalβ_at_apply, Ο.mem_ker] at H hβ hβ, | |
obtain β¨a, haβ, haββ© := H hβ _, | |
{ refine β¨a, haβ, _β©, rwa [Ο.map_sub, sub_eq_zero] at haβ, }, | |
{ contrapose! hβ, | |
rwa [β mem_nonunits_iff, β local_ring.mem_maximal_ideal, | |
β local_ring.ker_eq_maximal_ideal Ο hΟ, Ο.mem_ker] at hβ, } }, | |
tfae_finish, | |
end | |
instance (R : Type*) [comm_ring R] [hR : henselian_local_ring R] : | |
henselian_ring R (maximal_ideal R) := | |
{ jac := by { rw [ideal.jacobson, le_Inf_iff], rintro I β¨-, hIβ©, exact (eq_maximal_ideal hI).ge }, | |
is_henselian := | |
begin | |
intros f hf aβ hβ hβ, | |
refine henselian_local_ring.is_henselian f hf aβ hβ _, | |
contrapose! hβ, | |
rw [β mem_nonunits_iff, β local_ring.mem_maximal_ideal, β ideal.quotient.eq_zero_iff_mem] at hβ, | |
rw hβ, | |
exact not_is_unit_zero | |
end } | |
/-- A ring `R` that is `I`-adically complete is Henselian at `I`. -/ | |
@[priority 100] -- see Note [lower instance priority] | |
instance is_adic_complete.henselian_ring | |
(R : Type*) [comm_ring R] (I : ideal R) [is_adic_complete I R] : | |
henselian_ring R I := | |
{ jac := is_adic_complete.le_jacobson_bot _, | |
is_henselian := | |
begin | |
intros f hf aβ hβ hβ, | |
classical, | |
let f' := f.derivative, | |
-- we define a sequence `c n` by starting at `aβ` and then continually | |
-- applying the function sending `b` to `b - f(b)/f'(b)` (Newton's method). | |
-- Note that `f'.eval b` is a unit, because `b` has the same residue as `aβ` modulo `I`. | |
let c : β β R := Ξ» n, nat.rec_on n aβ (Ξ» _ b, b - f.eval b * ring.inverse (f'.eval b)), | |
have hc : β n, c (n+1) = c n - f.eval (c n) * ring.inverse (f'.eval (c n)), | |
{ intro n, dsimp only [c, nat.rec_add_one], refl, }, | |
-- we now spend some time determining properties of the sequence `c : β β R` | |
-- `hc_mod`: for every `n`, we have `c n β‘ aβ [SMOD I]` | |
-- `hf'c` : for every `n`, `f'.eval (c n)` is a unit | |
-- `hfcI` : for every `n`, `f.eval (c n)` is contained in `I ^ (n+1)` | |
have hc_mod : β n, c n β‘ aβ [SMOD I], | |
{ intro n, induction n with n ih, { refl }, | |
rw [nat.succ_eq_add_one, hc, sub_eq_add_neg, β add_zero aβ], | |
refine ih.add _, | |
rw [smodeq.zero, ideal.neg_mem_iff], | |
refine I.mul_mem_right _ _, | |
rw [β smodeq.zero] at hβ β’, | |
exact (ih.eval f).trans hβ, }, | |
have hf'c : β n, is_unit (f'.eval (c n)), | |
{ intro n, | |
haveI := is_local_ring_hom_of_le_jacobson_bot I (is_adic_complete.le_jacobson_bot I), | |
apply is_unit_of_map_unit (ideal.quotient.mk I), | |
convert hβ using 1, | |
exact smodeq.def.mp ((hc_mod n).eval _), }, | |
have hfcI : β n, f.eval (c n) β I ^ (n+1), | |
{ intro n, | |
induction n with n ih, { simpa only [pow_one] }, | |
simp only [nat.succ_eq_add_one], | |
rw [β taylor_eval_sub (c n), hc], | |
simp only [sub_eq_add_neg, add_neg_cancel_comm], | |
rw [eval_eq_sum, sum_over_range' _ _ _ (lt_add_of_pos_right _ zero_lt_two), | |
β finset.sum_range_add_sum_Ico _ (nat.le_add_left _ _)], | |
swap, { intro i, rw zero_mul }, | |
refine ideal.add_mem _ _ _, | |
{ simp only [finset.sum_range_succ, taylor_coeff_one, mul_one, pow_one, taylor_coeff_zero, | |
mul_neg, finset.sum_singleton, finset.range_one, pow_zero], | |
rw [mul_left_comm, ring.mul_inverse_cancel _ (hf'c n), mul_one, add_neg_self], | |
exact ideal.zero_mem _ }, | |
{ refine submodule.sum_mem _ _, simp only [finset.mem_Ico], | |
rintro i β¨h2i, hiβ©, | |
have aux : n + 2 β€ i * (n + 1), { transitivity 2 * (n + 1); nlinarith only [h2i], }, | |
refine ideal.mul_mem_left _ _ (ideal.pow_le_pow aux _), | |
rw [pow_mul'], | |
refine ideal.pow_mem_pow ((ideal.neg_mem_iff _).2 $ ideal.mul_mem_right _ _ ih) _, } }, | |
-- we are now in the position to show that `c : β β R` is a Cauchy sequence | |
have aux : β m n, m β€ n β c m β‘ c n [SMOD (I ^ m β’ β€ : ideal R)], | |
{ intros m n hmn, | |
rw [β ideal.one_eq_top, ideal.smul_eq_mul, mul_one], | |
obtain β¨k, rflβ© := nat.exists_eq_add_of_le hmn, clear hmn, | |
induction k with k ih, { rw add_zero, }, | |
rw [nat.succ_eq_add_one, β add_assoc, hc, β add_zero (c m), sub_eq_add_neg], | |
refine ih.add _, symmetry, | |
rw [smodeq.zero, ideal.neg_mem_iff], | |
refine ideal.mul_mem_right _ _ (ideal.pow_le_pow _ (hfcI _)), | |
rw [add_assoc], exact le_self_add }, | |
-- hence the sequence converges to some limit point `a`, which is the `a` we are looking for | |
obtain β¨a, haβ© := is_precomplete.prec' c aux, | |
refine β¨a, _, _β©, | |
{ show f.is_root a, | |
suffices : β n, f.eval a β‘ 0 [SMOD (I ^ n β’ β€ : ideal R)], { from is_Hausdorff.haus' _ this }, | |
intro n, specialize ha n, | |
rw [β ideal.one_eq_top, ideal.smul_eq_mul, mul_one] at ha β’, | |
refine (ha.symm.eval f).trans _, | |
rw [smodeq.zero], | |
exact ideal.pow_le_pow le_self_add (hfcI _), }, | |
{ show a - aβ β I, | |
specialize ha 1, | |
rw [hc, pow_one, β ideal.one_eq_top, ideal.smul_eq_mul, mul_one, sub_eq_add_neg] at ha, | |
rw [β smodeq.sub_mem, β add_zero aβ], | |
refine ha.symm.trans (smodeq.rfl.add _), | |
rw [smodeq.zero, ideal.neg_mem_iff], | |
exact ideal.mul_mem_right _ _ hβ, } | |
end } | |