Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
I think it's all done!
fc5e983
raw
history blame
11.8 kB
/-
Copyright (c) 2021 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
import data.polynomial.taylor
import ring_theory.ideal.local_ring
import linear_algebra.adic_completion
/-!
# Henselian rings
In this file we set up the basic theory of Henselian (local) rings.
A ring `R` is *Henselian* at an ideal `I` if the following conditions hold:
* `I` is contained in the Jacobson radical of `R`
* for every polynomial `f` over `R`, with a *simple* root `aβ‚€` over the quotient ring `R/I`,
there exists a lift `a : R` of `aβ‚€` that is a root of `f`.
(Here, saying that a root `b` of a polynomial `g` is *simple* means that `g.derivative.eval b` is a
unit. Warning: if `R/I` is not a field then it is not enough to assume that `g` has a factorization
into monic linear factors in which `X - b` shows up only once; for example `1` is not a simple root
of `X^2-1` over `β„€/4β„€`.)
A local ring `R` is *Henselian* if it is Henselian at its maximal ideal.
In this case the first condition is automatic, and in the second condition we may ask for
`f.derivative.eval a β‰  0`, since the quotient ring `R/I` is a field in this case.
## Main declarations
* `henselian_ring`: a typeclass on commutative rings,
asserting that the ring is Henselian at the ideal `I`.
* `henselian_local_ring`: a typeclass on commutative rings,
asserting that the ring is local Henselian.
* `field.henselian`: fields are Henselian local rings
* `henselian.tfae`: equivalent ways of expressing the Henselian property for local rings
* `is_adic_complete.henselian`:
a ring `R` with ideal `I` that is `I`-adically complete is Henselian at `I`
## References
https://stacks.math.columbia.edu/tag/04GE
## Todo
After a good API for etale ring homomorphisms has been developed,
we can give more equivalent characterization os Henselian rings.
In particular, this can give a proof that factorizations into coprime polynomials can be lifted
from the residue field to the Henselian ring.
The following gist contains some code sketches in that direction.
https://gist.github.com/jcommelin/47d94e4af092641017a97f7f02bf9598
-/
noncomputable theory
universes u v
open_locale big_operators polynomial
open local_ring polynomial function
lemma is_local_ring_hom_of_le_jacobson_bot {R : Type*} [comm_ring R]
(I : ideal R) (h : I ≀ ideal.jacobson βŠ₯) :
is_local_ring_hom (ideal.quotient.mk I) :=
begin
constructor,
intros a h,
have : is_unit (ideal.quotient.mk (ideal.jacobson βŠ₯) a),
{ rw [is_unit_iff_exists_inv] at *,
obtain ⟨b, hb⟩ := h,
obtain ⟨b, rfl⟩ := ideal.quotient.mk_surjective b,
use ideal.quotient.mk _ b,
rw [←(ideal.quotient.mk _).map_one, ←(ideal.quotient.mk _).map_mul, ideal.quotient.eq] at ⊒ hb,
exact h hb },
obtain ⟨⟨x, y, h1, h2⟩, rfl : x = _⟩ := this,
obtain ⟨y, rfl⟩ := ideal.quotient.mk_surjective y,
rw [← (ideal.quotient.mk _).map_mul, ← (ideal.quotient.mk _).map_one, ideal.quotient.eq,
ideal.mem_jacobson_bot] at h1 h2,
specialize h1 1,
simp at h1,
exact h1.1,
end
/-- A ring `R` is *Henselian* at an ideal `I` if the following condition holds:
for every polynomial `f` over `R`, with a *simple* root `aβ‚€` over the quotient ring `R/I`,
there exists a lift `a : R` of `aβ‚€` that is a root of `f`.
(Here, saying that a root `b` of a polynomial `g` is *simple* means that `g.derivative.eval b` is a
unit. Warning: if `R/I` is not a field then it is not enough to assume that `g` has a factorization
into monic linear factors in which `X - b` shows up only once; for example `1` is not a simple root
of `X^2-1` over `β„€/4β„€`.) -/
class henselian_ring (R : Type*) [comm_ring R] (I : ideal R) : Prop :=
(jac : I ≀ ideal.jacobson βŠ₯)
(is_henselian : βˆ€ (f : R[X]) (hf : f.monic) (aβ‚€ : R) (h₁ : f.eval aβ‚€ ∈ I)
(hβ‚‚ : is_unit (ideal.quotient.mk I (f.derivative.eval aβ‚€))),
βˆƒ a : R, f.is_root a ∧ (a - aβ‚€ ∈ I))
/-- A local ring `R` is *Henselian* if the following condition holds:
for every polynomial `f` over `R`, with a *simple* root `aβ‚€` over the residue field,
there exists a lift `a : R` of `aβ‚€` that is a root of `f`.
(Recall that a root `b` of a polynomial `g` is *simple* if it is not a double root, so if
`g.derivative.eval b β‰  0`.)
In other words, `R` is local Henselian if it is Henselian at the ideal `I`,
in the sense of `henselian_ring`. -/
class henselian_local_ring (R : Type*) [comm_ring R] extends local_ring R : Prop :=
(is_henselian : βˆ€ (f : R[X]) (hf : f.monic) (aβ‚€ : R) (h₁ : f.eval aβ‚€ ∈ maximal_ideal R)
(hβ‚‚ : is_unit (f.derivative.eval aβ‚€)),
βˆƒ a : R, f.is_root a ∧ (a - aβ‚€ ∈ maximal_ideal R))
@[priority 100] -- see Note [lower instance priority]
instance field.henselian (K : Type*) [field K] : henselian_local_ring K :=
{ is_henselian := Ξ» f hf aβ‚€ h₁ hβ‚‚,
begin
refine ⟨aβ‚€, _, _⟩;
rwa [(maximal_ideal K).eq_bot_of_prime, ideal.mem_bot] at *,
rw sub_self,
end }
lemma henselian_local_ring.tfae (R : Type u) [comm_ring R] [local_ring R] :
tfae [
henselian_local_ring R,
βˆ€ (f : R[X]) (hf : f.monic) (aβ‚€ : residue_field R) (h₁ : aeval aβ‚€ f = 0)
(hβ‚‚ : aeval aβ‚€ f.derivative β‰  0),
βˆƒ a : R, f.is_root a ∧ (residue R a = aβ‚€),
βˆ€ {K : Type u} [field K], by exactI βˆ€ (Ο† : R β†’+* K) (hΟ† : surjective Ο†)
(f : R[X]) (hf : f.monic) (aβ‚€ : K) (h₁ : f.evalβ‚‚ Ο† aβ‚€ = 0)
(hβ‚‚ : f.derivative.evalβ‚‚ Ο† aβ‚€ β‰  0),
βˆƒ a : R, f.is_root a ∧ (Ο† a = aβ‚€)] :=
begin
tfae_have _3_2 : 3 β†’ 2, { intro H, exact H (residue R) ideal.quotient.mk_surjective, },
tfae_have _2_1 : 2 β†’ 1,
{ intros H, constructor, intros f hf aβ‚€ h₁ hβ‚‚,
specialize H f hf (residue R aβ‚€),
have aux := flip mem_nonunits_iff.mp hβ‚‚,
simp only [aeval_def, ring_hom.algebra_map_to_algebra, evalβ‚‚_at_apply,
← ideal.quotient.eq_zero_iff_mem, ← local_ring.mem_maximal_ideal] at H h₁ aux,
obtain ⟨a, ha₁, haβ‚‚βŸ© := H h₁ aux,
refine ⟨a, ha₁, _⟩,
rw ← ideal.quotient.eq_zero_iff_mem,
rwa [← sub_eq_zero, ← ring_hom.map_sub] at haβ‚‚, },
tfae_have _1_3 : 1 β†’ 3,
{ introsI hR K _K Ο† hΟ† f hf aβ‚€ h₁ hβ‚‚,
obtain ⟨aβ‚€, rfl⟩ := hΟ† aβ‚€,
have H := henselian_local_ring.is_henselian f hf aβ‚€,
simp only [← ker_eq_maximal_ideal Ο† hΟ†, evalβ‚‚_at_apply, Ο†.mem_ker] at H h₁ hβ‚‚,
obtain ⟨a, ha₁, haβ‚‚βŸ© := H h₁ _,
{ refine ⟨a, ha₁, _⟩, rwa [Ο†.map_sub, sub_eq_zero] at haβ‚‚, },
{ contrapose! hβ‚‚,
rwa [← mem_nonunits_iff, ← local_ring.mem_maximal_ideal,
← local_ring.ker_eq_maximal_ideal Ο† hΟ†, Ο†.mem_ker] at hβ‚‚, } },
tfae_finish,
end
instance (R : Type*) [comm_ring R] [hR : henselian_local_ring R] :
henselian_ring R (maximal_ideal R) :=
{ jac := by { rw [ideal.jacobson, le_Inf_iff], rintro I ⟨-, hI⟩, exact (eq_maximal_ideal hI).ge },
is_henselian :=
begin
intros f hf aβ‚€ h₁ hβ‚‚,
refine henselian_local_ring.is_henselian f hf aβ‚€ h₁ _,
contrapose! hβ‚‚,
rw [← mem_nonunits_iff, ← local_ring.mem_maximal_ideal, ← ideal.quotient.eq_zero_iff_mem] at hβ‚‚,
rw hβ‚‚,
exact not_is_unit_zero
end }
/-- A ring `R` that is `I`-adically complete is Henselian at `I`. -/
@[priority 100] -- see Note [lower instance priority]
instance is_adic_complete.henselian_ring
(R : Type*) [comm_ring R] (I : ideal R) [is_adic_complete I R] :
henselian_ring R I :=
{ jac := is_adic_complete.le_jacobson_bot _,
is_henselian :=
begin
intros f hf aβ‚€ h₁ hβ‚‚,
classical,
let f' := f.derivative,
-- we define a sequence `c n` by starting at `aβ‚€` and then continually
-- applying the function sending `b` to `b - f(b)/f'(b)` (Newton's method).
-- Note that `f'.eval b` is a unit, because `b` has the same residue as `aβ‚€` modulo `I`.
let c : β„• β†’ R := Ξ» n, nat.rec_on n aβ‚€ (Ξ» _ b, b - f.eval b * ring.inverse (f'.eval b)),
have hc : βˆ€ n, c (n+1) = c n - f.eval (c n) * ring.inverse (f'.eval (c n)),
{ intro n, dsimp only [c, nat.rec_add_one], refl, },
-- we now spend some time determining properties of the sequence `c : β„• β†’ R`
-- `hc_mod`: for every `n`, we have `c n ≑ aβ‚€ [SMOD I]`
-- `hf'c` : for every `n`, `f'.eval (c n)` is a unit
-- `hfcI` : for every `n`, `f.eval (c n)` is contained in `I ^ (n+1)`
have hc_mod : βˆ€ n, c n ≑ aβ‚€ [SMOD I],
{ intro n, induction n with n ih, { refl },
rw [nat.succ_eq_add_one, hc, sub_eq_add_neg, ← add_zero aβ‚€],
refine ih.add _,
rw [smodeq.zero, ideal.neg_mem_iff],
refine I.mul_mem_right _ _,
rw [← smodeq.zero] at h₁ ⊒,
exact (ih.eval f).trans h₁, },
have hf'c : βˆ€ n, is_unit (f'.eval (c n)),
{ intro n,
haveI := is_local_ring_hom_of_le_jacobson_bot I (is_adic_complete.le_jacobson_bot I),
apply is_unit_of_map_unit (ideal.quotient.mk I),
convert hβ‚‚ using 1,
exact smodeq.def.mp ((hc_mod n).eval _), },
have hfcI : βˆ€ n, f.eval (c n) ∈ I ^ (n+1),
{ intro n,
induction n with n ih, { simpa only [pow_one] },
simp only [nat.succ_eq_add_one],
rw [← taylor_eval_sub (c n), hc],
simp only [sub_eq_add_neg, add_neg_cancel_comm],
rw [eval_eq_sum, sum_over_range' _ _ _ (lt_add_of_pos_right _ zero_lt_two),
← finset.sum_range_add_sum_Ico _ (nat.le_add_left _ _)],
swap, { intro i, rw zero_mul },
refine ideal.add_mem _ _ _,
{ simp only [finset.sum_range_succ, taylor_coeff_one, mul_one, pow_one, taylor_coeff_zero,
mul_neg, finset.sum_singleton, finset.range_one, pow_zero],
rw [mul_left_comm, ring.mul_inverse_cancel _ (hf'c n), mul_one, add_neg_self],
exact ideal.zero_mem _ },
{ refine submodule.sum_mem _ _, simp only [finset.mem_Ico],
rintro i ⟨h2i, hi⟩,
have aux : n + 2 ≀ i * (n + 1), { transitivity 2 * (n + 1); nlinarith only [h2i], },
refine ideal.mul_mem_left _ _ (ideal.pow_le_pow aux _),
rw [pow_mul'],
refine ideal.pow_mem_pow ((ideal.neg_mem_iff _).2 $ ideal.mul_mem_right _ _ ih) _, } },
-- we are now in the position to show that `c : β„• β†’ R` is a Cauchy sequence
have aux : βˆ€ m n, m ≀ n β†’ c m ≑ c n [SMOD (I ^ m β€’ ⊀ : ideal R)],
{ intros m n hmn,
rw [← ideal.one_eq_top, ideal.smul_eq_mul, mul_one],
obtain ⟨k, rfl⟩ := nat.exists_eq_add_of_le hmn, clear hmn,
induction k with k ih, { rw add_zero, },
rw [nat.succ_eq_add_one, ← add_assoc, hc, ← add_zero (c m), sub_eq_add_neg],
refine ih.add _, symmetry,
rw [smodeq.zero, ideal.neg_mem_iff],
refine ideal.mul_mem_right _ _ (ideal.pow_le_pow _ (hfcI _)),
rw [add_assoc], exact le_self_add },
-- hence the sequence converges to some limit point `a`, which is the `a` we are looking for
obtain ⟨a, ha⟩ := is_precomplete.prec' c aux,
refine ⟨a, _, _⟩,
{ show f.is_root a,
suffices : βˆ€ n, f.eval a ≑ 0 [SMOD (I ^ n β€’ ⊀ : ideal R)], { from is_Hausdorff.haus' _ this },
intro n, specialize ha n,
rw [← ideal.one_eq_top, ideal.smul_eq_mul, mul_one] at ha ⊒,
refine (ha.symm.eval f).trans _,
rw [smodeq.zero],
exact ideal.pow_le_pow le_self_add (hfcI _), },
{ show a - aβ‚€ ∈ I,
specialize ha 1,
rw [hc, pow_one, ← ideal.one_eq_top, ideal.smul_eq_mul, mul_one, sub_eq_add_neg] at ha,
rw [← smodeq.sub_mem, ← add_zero aβ‚€],
refine ha.symm.trans (smodeq.rfl.add _),
rw [smodeq.zero, ideal.neg_mem_iff],
exact ideal.mul_mem_right _ _ h₁, }
end }