Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2018 Mario Carneiro. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Mario Carneiro, Chris Hughes | |
-/ | |
import algebra.gcd_monoid.basic | |
import ring_theory.coprime.basic | |
import ring_theory.ideal.basic | |
import ring_theory.principal_ideal_domain | |
/-! | |
# Lemmas about Euclidean domains | |
Various about Euclidean domains are proved; all of them seem to be true | |
more generally for principal ideal domains, so these lemmas should | |
probably be reproved in more generality and this file perhaps removed? | |
## Tags | |
euclidean domain | |
-/ | |
noncomputable theory | |
open_locale classical | |
open euclidean_domain set ideal | |
section gcd_monoid | |
variables {R : Type*} [euclidean_domain R] [gcd_monoid R] | |
lemma gcd_ne_zero_of_left (p q : R) (hp : p ≠ 0) : | |
gcd_monoid.gcd p q ≠ 0 := | |
λ h, hp $ eq_zero_of_zero_dvd (h ▸ gcd_dvd_left p q) | |
lemma gcd_ne_zero_of_right (p q : R) (hp : q ≠ 0) : | |
gcd_monoid.gcd p q ≠ 0 := | |
λ h, hp $ eq_zero_of_zero_dvd (h ▸ gcd_dvd_right p q) | |
lemma left_div_gcd_ne_zero {p q : R} (hp : p ≠ 0) : | |
p / gcd_monoid.gcd p q ≠ 0 := | |
begin | |
obtain ⟨r, hr⟩ := gcd_monoid.gcd_dvd_left p q, | |
obtain ⟨pq0, r0⟩ : gcd_monoid.gcd p q ≠ 0 ∧ r ≠ 0 := mul_ne_zero_iff.mp (hr ▸ hp), | |
rw [hr, mul_comm, mul_div_cancel _ pq0] { occs := occurrences.pos [1] }, | |
exact r0, | |
end | |
lemma right_div_gcd_ne_zero {p q : R} (hq : q ≠ 0) : | |
q / gcd_monoid.gcd p q ≠ 0 := | |
begin | |
obtain ⟨r, hr⟩ := gcd_monoid.gcd_dvd_right p q, | |
obtain ⟨pq0, r0⟩ : gcd_monoid.gcd p q ≠ 0 ∧ r ≠ 0 := mul_ne_zero_iff.mp (hr ▸ hq), | |
rw [hr, mul_comm, mul_div_cancel _ pq0] { occs := occurrences.pos [1] }, | |
exact r0, | |
end | |
end gcd_monoid | |
namespace euclidean_domain | |
/-- Create a `gcd_monoid` whose `gcd_monoid.gcd` matches `euclidean_domain.gcd`. -/ | |
def gcd_monoid (R) [euclidean_domain R] : gcd_monoid R := | |
{ gcd := gcd, | |
lcm := lcm, | |
gcd_dvd_left := gcd_dvd_left, | |
gcd_dvd_right := gcd_dvd_right, | |
dvd_gcd := λ a b c, dvd_gcd, | |
gcd_mul_lcm := λ a b, by rw euclidean_domain.gcd_mul_lcm, | |
lcm_zero_left := lcm_zero_left, | |
lcm_zero_right := lcm_zero_right } | |
variables {α : Type*} [euclidean_domain α] [decidable_eq α] | |
theorem span_gcd {α} [euclidean_domain α] (x y : α) : | |
span ({gcd x y} : set α) = span ({x, y} : set α) := | |
begin | |
letI := euclidean_domain.gcd_monoid α, | |
exact span_gcd x y, | |
end | |
theorem gcd_is_unit_iff {α} [euclidean_domain α] {x y : α} : | |
is_unit (gcd x y) ↔ is_coprime x y := | |
begin | |
letI := euclidean_domain.gcd_monoid α, | |
exact gcd_is_unit_iff x y, | |
end | |
-- this should be proved for UFDs surely? | |
theorem is_coprime_of_dvd {α} [euclidean_domain α] {x y : α} | |
(nonzero : ¬ (x = 0 ∧ y = 0)) (H : ∀ z ∈ nonunits α, z ≠ 0 → z ∣ x → ¬ z ∣ y) : | |
is_coprime x y := | |
begin | |
letI := euclidean_domain.gcd_monoid α, | |
exact is_coprime_of_dvd x y nonzero H, | |
end | |
-- this should be proved for UFDs surely? | |
theorem dvd_or_coprime {α} [euclidean_domain α] (x y : α) | |
(h : irreducible x) : x ∣ y ∨ is_coprime x y := | |
begin | |
letI := euclidean_domain.gcd_monoid α, | |
exact dvd_or_coprime x y h, | |
end | |
end euclidean_domain | |