Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /lean /mathlib /ring_theory /euclidean_domain.lean
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
3.16 kB
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Chris Hughes
-/
import algebra.gcd_monoid.basic
import ring_theory.coprime.basic
import ring_theory.ideal.basic
import ring_theory.principal_ideal_domain
/-!
# Lemmas about Euclidean domains
Various about Euclidean domains are proved; all of them seem to be true
more generally for principal ideal domains, so these lemmas should
probably be reproved in more generality and this file perhaps removed?
## Tags
euclidean domain
-/
noncomputable theory
open_locale classical
open euclidean_domain set ideal
section gcd_monoid
variables {R : Type*} [euclidean_domain R] [gcd_monoid R]
lemma gcd_ne_zero_of_left (p q : R) (hp : p0) :
gcd_monoid.gcd p q0 :=
λ h, hp $ eq_zero_of_zero_dvd (hgcd_dvd_left p q)
lemma gcd_ne_zero_of_right (p q : R) (hp : q0) :
gcd_monoid.gcd p q0 :=
λ h, hp $ eq_zero_of_zero_dvd (hgcd_dvd_right p q)
lemma left_div_gcd_ne_zero {p q : R} (hp : p0) :
p / gcd_monoid.gcd p q ≠ 0 :=
begin
obtain ⟨r, hr⟩ := gcd_monoid.gcd_dvd_left p q,
obtain ⟨pq0, r0⟩ : gcd_monoid.gcd p q ≠ 0 ∧ r ≠ 0 := mul_ne_zero_iff.mp (hr ▸ hp),
rw [hr, mul_comm, mul_div_cancel _ pq0] { occs := occurrences.pos [1] },
exact r0,
end
lemma right_div_gcd_ne_zero {p q : R} (hq : q ≠ 0) :
q / gcd_monoid.gcd p q0 :=
begin
obtain ⟨r, hr:= gcd_monoid.gcd_dvd_right p q,
obtain ⟨pq0, r0: gcd_monoid.gcd p q0r0 := mul_ne_zero_iff.mp (hrhq),
rw [hr, mul_comm, mul_div_cancel _ pq0] { occs := occurrences.pos [1] },
exact r0,
end
end gcd_monoid
namespace euclidean_domain
/-- Create a `gcd_monoid` whose `gcd_monoid.gcd` matches `euclidean_domain.gcd`. -/
def gcd_monoid (R) [euclidean_domain R] : gcd_monoid R :=
{ gcd := gcd,
lcm := lcm,
gcd_dvd_left := gcd_dvd_left,
gcd_dvd_right := gcd_dvd_right,
dvd_gcd := λ a b c, dvd_gcd,
gcd_mul_lcm := λ a b, by rw euclidean_domain.gcd_mul_lcm,
lcm_zero_left := lcm_zero_left,
lcm_zero_right := lcm_zero_right }
variables {α : Type*} [euclidean_domain α] [decidable_eq α]
theorem span_gcd {α} [euclidean_domain α] (x y : α) :
span ({gcd x y} : set α) = span ({x, y} : set α) :=
begin
letI := euclidean_domain.gcd_monoid α,
exact span_gcd x y,
end
theorem gcd_is_unit_iff {α} [euclidean_domain α] {x y : α} :
is_unit (gcd x y)is_coprime x y :=
begin
letI := euclidean_domain.gcd_monoid α,
exact gcd_is_unit_iff x y,
end
-- this should be proved for UFDs surely?
theorem is_coprime_of_dvd {α} [euclidean_domain α] {x y : α}
(nonzero : ¬ (x = 0y = 0)) (H :znonunits α, z0zx → ¬ zy) :
is_coprime x y :=
begin
letI := euclidean_domain.gcd_monoid α,
exact is_coprime_of_dvd x y nonzero H,
end
-- this should be proved for UFDs surely?
theorem dvd_or_coprime {α} [euclidean_domain α] (x y : α)
(h : irreducible x) : xyis_coprime x y :=
begin
letI := euclidean_domain.gcd_monoid α,
exact dvd_or_coprime x y h,
end
end euclidean_domain