/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Chris Hughes -/ import algebra.gcd_monoid.basic import ring_theory.coprime.basic import ring_theory.ideal.basic import ring_theory.principal_ideal_domain /-! # Lemmas about Euclidean domains Various about Euclidean domains are proved; all of them seem to be true more generally for principal ideal domains, so these lemmas should probably be reproved in more generality and this file perhaps removed? ## Tags euclidean domain -/ noncomputable theory open_locale classical open euclidean_domain set ideal section gcd_monoid variables {R : Type*} [euclidean_domain R] [gcd_monoid R] lemma gcd_ne_zero_of_left (p q : R) (hp : p ≠ 0) : gcd_monoid.gcd p q ≠ 0 := λ h, hp $ eq_zero_of_zero_dvd (h ▸ gcd_dvd_left p q) lemma gcd_ne_zero_of_right (p q : R) (hp : q ≠ 0) : gcd_monoid.gcd p q ≠ 0 := λ h, hp $ eq_zero_of_zero_dvd (h ▸ gcd_dvd_right p q) lemma left_div_gcd_ne_zero {p q : R} (hp : p ≠ 0) : p / gcd_monoid.gcd p q ≠ 0 := begin obtain ⟨r, hr⟩ := gcd_monoid.gcd_dvd_left p q, obtain ⟨pq0, r0⟩ : gcd_monoid.gcd p q ≠ 0 ∧ r ≠ 0 := mul_ne_zero_iff.mp (hr ▸ hp), rw [hr, mul_comm, mul_div_cancel _ pq0] { occs := occurrences.pos [1] }, exact r0, end lemma right_div_gcd_ne_zero {p q : R} (hq : q ≠ 0) : q / gcd_monoid.gcd p q ≠ 0 := begin obtain ⟨r, hr⟩ := gcd_monoid.gcd_dvd_right p q, obtain ⟨pq0, r0⟩ : gcd_monoid.gcd p q ≠ 0 ∧ r ≠ 0 := mul_ne_zero_iff.mp (hr ▸ hq), rw [hr, mul_comm, mul_div_cancel _ pq0] { occs := occurrences.pos [1] }, exact r0, end end gcd_monoid namespace euclidean_domain /-- Create a `gcd_monoid` whose `gcd_monoid.gcd` matches `euclidean_domain.gcd`. -/ def gcd_monoid (R) [euclidean_domain R] : gcd_monoid R := { gcd := gcd, lcm := lcm, gcd_dvd_left := gcd_dvd_left, gcd_dvd_right := gcd_dvd_right, dvd_gcd := λ a b c, dvd_gcd, gcd_mul_lcm := λ a b, by rw euclidean_domain.gcd_mul_lcm, lcm_zero_left := lcm_zero_left, lcm_zero_right := lcm_zero_right } variables {α : Type*} [euclidean_domain α] [decidable_eq α] theorem span_gcd {α} [euclidean_domain α] (x y : α) : span ({gcd x y} : set α) = span ({x, y} : set α) := begin letI := euclidean_domain.gcd_monoid α, exact span_gcd x y, end theorem gcd_is_unit_iff {α} [euclidean_domain α] {x y : α} : is_unit (gcd x y) ↔ is_coprime x y := begin letI := euclidean_domain.gcd_monoid α, exact gcd_is_unit_iff x y, end -- this should be proved for UFDs surely? theorem is_coprime_of_dvd {α} [euclidean_domain α] {x y : α} (nonzero : ¬ (x = 0 ∧ y = 0)) (H : ∀ z ∈ nonunits α, z ≠ 0 → z ∣ x → ¬ z ∣ y) : is_coprime x y := begin letI := euclidean_domain.gcd_monoid α, exact is_coprime_of_dvd x y nonzero H, end -- this should be proved for UFDs surely? theorem dvd_or_coprime {α} [euclidean_domain α] (x y : α) (h : irreducible x) : x ∣ y ∨ is_coprime x y := begin letI := euclidean_domain.gcd_monoid α, exact dvd_or_coprime x y h, end end euclidean_domain