Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Chris Hughes. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Chris Hughes | |
-/ | |
import ring_theory.nakayama | |
import data.set_like.fintype | |
/-! | |
# Artinian rings and modules | |
A module satisfying these equivalent conditions is said to be an *Artinian* R-module | |
if every decreasing chain of submodules is eventually constant, or equivalently, | |
if the relation `<` on submodules is well founded. | |
A ring is said to be left (or right) Artinian if it is Artinian as a left (or right) module over | |
itself, or simply Artinian if it is both left and right Artinian. | |
## Main definitions | |
Let `R` be a ring and let `M` and `P` be `R`-modules. Let `N` be an `R`-submodule of `M`. | |
* `is_artinian R M` is the proposition that `M` is a Artinian `R`-module. It is a class, | |
implemented as the predicate that the `<` relation on submodules is well founded. | |
* `is_artinian_ring R` is the proposition that `R` is a left Artinian ring. | |
## References | |
* [M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*][atiyah-macdonald] | |
* [samuel] | |
## Tags | |
Artinian, artinian, Artinian ring, Artinian module, artinian ring, artinian module | |
-/ | |
open set | |
open_locale big_operators pointwise | |
/-- | |
`is_artinian R M` is the proposition that `M` is an Artinian `R`-module, | |
implemented as the well-foundedness of submodule inclusion. | |
-/ | |
class is_artinian (R M) [semiring R] [add_comm_monoid M] [module R M] : Prop := | |
(well_founded_submodule_lt [] : well_founded ((<) : submodule R M → submodule R M → Prop)) | |
section | |
variables {R M P N : Type*} | |
variables [ring R] [add_comm_group M] [add_comm_group P] [add_comm_group N] | |
variables [module R M] [module R P] [module R N] | |
open is_artinian | |
include R | |
theorem is_artinian_of_injective (f : M →ₗ[R] P) (h : function.injective f) | |
[is_artinian R P] : is_artinian R M := | |
⟨subrelation.wf | |
(λ A B hAB, show A.map f < B.map f, | |
from submodule.map_strict_mono_of_injective h hAB) | |
(inv_image.wf (submodule.map f) (is_artinian.well_founded_submodule_lt R P))⟩ | |
instance is_artinian_submodule' [is_artinian R M] (N : submodule R M) : is_artinian R N := | |
is_artinian_of_injective N.subtype subtype.val_injective | |
lemma is_artinian_of_le {s t : submodule R M} [ht : is_artinian R t] | |
(h : s ≤ t) : is_artinian R s := | |
is_artinian_of_injective (submodule.of_le h) (submodule.of_le_injective h) | |
variable (M) | |
theorem is_artinian_of_surjective (f : M →ₗ[R] P) (hf : function.surjective f) | |
[is_artinian R M] : is_artinian R P := | |
⟨subrelation.wf | |
(λ A B hAB, show A.comap f < B.comap f, | |
from submodule.comap_strict_mono_of_surjective hf hAB) | |
(inv_image.wf (submodule.comap f) (is_artinian.well_founded_submodule_lt _ _))⟩ | |
variable {M} | |
theorem is_artinian_of_linear_equiv (f : M ≃ₗ[R] P) | |
[is_artinian R M] : is_artinian R P := | |
is_artinian_of_surjective _ f.to_linear_map f.to_equiv.surjective | |
theorem is_artinian_of_range_eq_ker | |
[is_artinian R M] [is_artinian R P] | |
(f : M →ₗ[R] N) (g : N →ₗ[R] P) | |
(hf : function.injective f) | |
(hg : function.surjective g) | |
(h : f.range = g.ker) : | |
is_artinian R N := | |
⟨well_founded_lt_exact_sequence | |
(is_artinian.well_founded_submodule_lt _ _) | |
(is_artinian.well_founded_submodule_lt _ _) | |
f.range | |
(submodule.map f) | |
(submodule.comap f) | |
(submodule.comap g) | |
(submodule.map g) | |
(submodule.gci_map_comap hf) | |
(submodule.gi_map_comap hg) | |
(by simp [submodule.map_comap_eq, inf_comm]) | |
(by simp [submodule.comap_map_eq, h])⟩ | |
instance is_artinian_prod [is_artinian R M] | |
[is_artinian R P] : is_artinian R (M × P) := | |
is_artinian_of_range_eq_ker | |
(linear_map.inl R M P) | |
(linear_map.snd R M P) | |
linear_map.inl_injective | |
linear_map.snd_surjective | |
(linear_map.range_inl R M P) | |
@[priority 100] | |
instance is_artinian_of_finite [finite M] : is_artinian R M := | |
let ⟨_⟩ := nonempty_fintype M in by exactI | |
⟨fintype.well_founded_of_trans_of_irrefl _⟩ | |
local attribute [elab_as_eliminator] fintype.induction_empty_option | |
instance is_artinian_pi {R ι : Type*} [fintype ι] : Π {M : ι → Type*} [ring R] | |
[Π i, add_comm_group (M i)], by exactI Π [Π i, module R (M i)], | |
by exactI Π [∀ i, is_artinian R (M i)], is_artinian R (Π i, M i) := | |
fintype.induction_empty_option | |
(begin | |
introsI α β e hα M _ _ _ _, | |
exact is_artinian_of_linear_equiv | |
(linear_equiv.Pi_congr_left R M e) | |
end) | |
(by { introsI M _ _ _ _, apply_instance }) | |
(begin | |
introsI α _ ih M _ _ _ _, | |
exact is_artinian_of_linear_equiv | |
(linear_equiv.pi_option_equiv_prod R).symm, | |
end) | |
ι | |
/-- A version of `is_artinian_pi` for non-dependent functions. We need this instance because | |
sometimes Lean fails to apply the dependent version in non-dependent settings (e.g., it fails to | |
prove that `ι → ℝ` is finite dimensional over `ℝ`). -/ | |
instance is_artinian_pi' {R ι M : Type*} [ring R] [add_comm_group M] [module R M] [fintype ι] | |
[is_artinian R M] : is_artinian R (ι → M) := | |
is_artinian_pi | |
end | |
open is_artinian submodule function | |
section ring | |
variables {R M : Type*} [ring R] [add_comm_group M] [module R M] | |
theorem is_artinian_iff_well_founded : | |
is_artinian R M ↔ well_founded ((<) : submodule R M → submodule R M → Prop) := | |
⟨λ h, h.1, is_artinian.mk⟩ | |
variables {R M} | |
lemma is_artinian.finite_of_linear_independent [nontrivial R] [is_artinian R M] | |
{s : set M} (hs : linear_independent R (coe : s → M)) : s.finite := | |
begin | |
refine classical.by_contradiction (λ hf, (rel_embedding.well_founded_iff_no_descending_seq.1 | |
(well_founded_submodule_lt R M)).elim' _), | |
have f : ℕ ↪ s, from set.infinite.nat_embedding s hf, | |
have : ∀ n, (coe ∘ f) '' {m | n ≤ m} ⊆ s, | |
{ rintros n x ⟨y, hy₁, rfl⟩, exact (f y).2 }, | |
have : ∀ a b : ℕ, a ≤ b ↔ | |
span R ((coe ∘ f) '' {m | b ≤ m}) ≤ span R ((coe ∘ f) '' {m | a ≤ m}), | |
{ assume a b, | |
rw [span_le_span_iff hs (this b) (this a), | |
set.image_subset_image_iff (subtype.coe_injective.comp f.injective), | |
set.subset_def], | |
simp only [set.mem_set_of_eq], | |
exact ⟨λ hab x, le_trans hab, λ h, (h _ le_rfl)⟩ }, | |
exact ⟨⟨λ n, span R ((coe ∘ f) '' {m | n ≤ m}), | |
λ x y, by simp [le_antisymm_iff, (this _ _).symm] {contextual := tt}⟩, | |
begin | |
intros a b, | |
conv_rhs { rw [gt, lt_iff_le_not_le, this, this, ← lt_iff_le_not_le] }, | |
simp | |
end⟩ | |
end | |
/-- A module is Artinian iff every nonempty set of submodules has a minimal submodule among them. | |
-/ | |
theorem set_has_minimal_iff_artinian : | |
(∀ a : set $ submodule R M, a.nonempty → ∃ M' ∈ a, ∀ I ∈ a, I ≤ M' → I = M') ↔ | |
is_artinian R M := | |
by rw [is_artinian_iff_well_founded, well_founded.well_founded_iff_has_min'] | |
theorem is_artinian.set_has_minimal [is_artinian R M] (a : set $ submodule R M) (ha : a.nonempty) : | |
∃ M' ∈ a, ∀ I ∈ a, I ≤ M' → I = M' := | |
set_has_minimal_iff_artinian.mpr ‹_› a ha | |
/-- A module is Artinian iff every decreasing chain of submodules stabilizes. -/ | |
theorem monotone_stabilizes_iff_artinian : | |
(∀ (f : ℕ →o (submodule R M)ᵒᵈ), ∃ n, ∀ m, n ≤ m → f n = f m) ↔ is_artinian R M := | |
by { rw is_artinian_iff_well_founded, exact well_founded.monotone_chain_condition.symm } | |
namespace is_artinian | |
variables [is_artinian R M] | |
theorem monotone_stabilizes (f : ℕ →o (submodule R M)ᵒᵈ) : ∃ n, ∀ m, n ≤ m → f n = f m := | |
monotone_stabilizes_iff_artinian.mpr ‹_› f | |
/-- If `∀ I > J, P I` implies `P J`, then `P` holds for all submodules. -/ | |
lemma induction {P : submodule R M → Prop} (hgt : ∀ I, (∀ J < I, P J) → P I) (I : submodule R M) : | |
P I := | |
(well_founded_submodule_lt R M).recursion I hgt | |
/-- | |
For any endomorphism of a Artinian module, there is some nontrivial iterate | |
with disjoint kernel and range. | |
-/ | |
theorem exists_endomorphism_iterate_ker_sup_range_eq_top (f : M →ₗ[R] M) : | |
∃ n : ℕ, n ≠ 0 ∧ (f ^ n).ker ⊔ (f ^ n).range = ⊤ := | |
begin | |
obtain ⟨n, w⟩ := monotone_stabilizes (f.iterate_range.comp ⟨λ n, n+1, λ n m w, by linarith⟩), | |
specialize w ((n + 1) + n) (by linarith), | |
dsimp at w, | |
refine ⟨n + 1, nat.succ_ne_zero _, _⟩, | |
simp_rw [eq_top_iff', mem_sup], | |
intro x, | |
have : (f^(n + 1)) x ∈ (f ^ ((n + 1) + n + 1)).range, | |
{ rw ← w, exact mem_range_self _ }, | |
rcases this with ⟨y, hy⟩, | |
use x - (f ^ (n+1)) y, | |
split, | |
{ rw [linear_map.mem_ker, linear_map.map_sub, ← hy, sub_eq_zero, pow_add], | |
simp [iterate_add_apply], }, | |
{ use (f^ (n+1)) y, | |
simp } | |
end | |
/-- Any injective endomorphism of an Artinian module is surjective. -/ | |
theorem surjective_of_injective_endomorphism (f : M →ₗ[R] M) (s : injective f) : surjective f := | |
begin | |
obtain ⟨n, ne, w⟩ := exists_endomorphism_iterate_ker_sup_range_eq_top f, | |
rw [linear_map.ker_eq_bot.mpr (linear_map.iterate_injective s n), bot_sup_eq, | |
linear_map.range_eq_top] at w, | |
exact linear_map.surjective_of_iterate_surjective ne w, | |
end | |
/-- Any injective endomorphism of an Artinian module is bijective. -/ | |
theorem bijective_of_injective_endomorphism (f : M →ₗ[R] M) (s : injective f) : bijective f := | |
⟨s, surjective_of_injective_endomorphism f s⟩ | |
/-- | |
A sequence `f` of submodules of a artinian module, | |
with the supremum `f (n+1)` and the infinum of `f 0`, ..., `f n` being ⊤, | |
is eventually ⊤. | |
-/ | |
lemma disjoint_partial_infs_eventually_top (f : ℕ → submodule R M) | |
(h : ∀ n, disjoint (partial_sups (order_dual.to_dual ∘ f) n) (order_dual.to_dual (f (n+1)))) : | |
∃ n : ℕ, ∀ m, n ≤ m → f m = ⊤ := | |
begin | |
-- A little off-by-one cleanup first: | |
suffices t : ∃ n : ℕ, ∀ m, n ≤ m → order_dual.to_dual f (m+1) = ⊤, | |
{ obtain ⟨n, w⟩ := t, | |
use n+1, | |
rintros (_|m) p, | |
{ cases p, }, | |
{ apply w, | |
exact nat.succ_le_succ_iff.mp p }, }, | |
obtain ⟨n, w⟩ := monotone_stabilizes (partial_sups (order_dual.to_dual ∘ f)), | |
refine ⟨n, λ m p, _⟩, | |
exact (h m).eq_bot_of_ge (sup_eq_left.1 $ (w (m + 1) $ le_add_right p).symm.trans $ w m p) | |
end | |
end is_artinian | |
end ring | |
section comm_ring | |
variables {R : Type*} (M : Type*) [comm_ring R] [add_comm_group M] [module R M] [is_artinian R M] | |
namespace is_artinian | |
lemma range_smul_pow_stabilizes (r : R) : ∃ n : ℕ, ∀ m, n ≤ m → | |
(r^n • linear_map.id : M →ₗ[R] M).range = (r^m • linear_map.id).range := | |
monotone_stabilizes | |
⟨λ n, (r^n • linear_map.id : M →ₗ[R] M).range, | |
λ n m h x ⟨y, hy⟩, ⟨r ^ (m - n) • y, | |
by { dsimp at ⊢ hy, rw [←smul_assoc, smul_eq_mul, ←pow_add, ←hy, add_tsub_cancel_of_le h] }⟩⟩ | |
variables {M} | |
lemma exists_pow_succ_smul_dvd (r : R) (x : M) : | |
∃ (n : ℕ) (y : M), r ^ n.succ • y = r ^ n • x := | |
begin | |
obtain ⟨n, hn⟩ := is_artinian.range_smul_pow_stabilizes M r, | |
simp_rw [set_like.ext_iff] at hn, | |
exact ⟨n, by simpa using hn n.succ n.le_succ (r ^ n • x)⟩, | |
end | |
end is_artinian | |
end comm_ring | |
-- TODO: Prove this for artinian modules | |
-- /-- | |
-- If `M ⊕ N` embeds into `M`, for `M` noetherian over `R`, then `N` is trivial. | |
-- -/ | |
-- universe w | |
-- variables {N : Type w} [add_comm_group N] [module R N] | |
-- noncomputable def is_noetherian.equiv_punit_of_prod_injective [is_noetherian R M] | |
-- (f : M × N →ₗ[R] M) (i : injective f) : N ≃ₗ[R] punit.{w+1} := | |
-- begin | |
-- apply nonempty.some, | |
-- obtain ⟨n, w⟩ := is_noetherian.disjoint_partial_sups_eventually_bot (f.tailing i) | |
-- (f.tailings_disjoint_tailing i), | |
-- specialize w n (le_refl n), | |
-- apply nonempty.intro, | |
-- refine (f.tailing_linear_equiv i n).symm.trans _, | |
-- rw w, | |
-- exact submodule.bot_equiv_punit, | |
-- end | |
/-- A ring is Artinian if it is Artinian as a module over itself. | |
Strictly speaking, this should be called `is_left_artinian_ring` but we omit the `left_` for | |
convenience in the commutative case. For a right Artinian ring, use `is_artinian Rᵐᵒᵖ R`. -/ | |
class is_artinian_ring (R) [ring R] extends is_artinian R R : Prop | |
-- TODO: Can we define `is_artinian_ring` in a different way so this isn't needed? | |
@[priority 100] | |
instance is_artinian_ring_of_finite (R) [ring R] [finite R] : is_artinian_ring R := ⟨⟩ | |
theorem is_artinian_ring_iff {R} [ring R] : is_artinian_ring R ↔ is_artinian R R := | |
⟨λ h, h.1, @is_artinian_ring.mk _ _⟩ | |
theorem ring.is_artinian_of_zero_eq_one {R} [ring R] (h01 : (0 : R) = 1) : is_artinian_ring R := | |
by haveI := subsingleton_of_zero_eq_one h01; | |
haveI := fintype.of_subsingleton (0:R); split; | |
apply_instance | |
theorem is_artinian_of_submodule_of_artinian (R M) [ring R] [add_comm_group M] [module R M] | |
(N : submodule R M) (h : is_artinian R M) : is_artinian R N := | |
by apply_instance | |
theorem is_artinian_of_quotient_of_artinian (R) [ring R] (M) [add_comm_group M] [module R M] | |
(N : submodule R M) (h : is_artinian R M) : is_artinian R (M ⧸ N) := | |
is_artinian_of_surjective M (submodule.mkq N) (submodule.quotient.mk_surjective N) | |
/-- If `M / S / R` is a scalar tower, and `M / R` is Artinian, then `M / S` is | |
also Artinian. -/ | |
theorem is_artinian_of_tower (R) {S M} [comm_ring R] [ring S] | |
[add_comm_group M] [algebra R S] [module S M] [module R M] [is_scalar_tower R S M] | |
(h : is_artinian R M) : is_artinian S M := | |
begin | |
rw is_artinian_iff_well_founded at h ⊢, | |
refine (submodule.restrict_scalars_embedding R S M).well_founded h | |
end | |
theorem is_artinian_of_fg_of_artinian {R M} [ring R] [add_comm_group M] [module R M] | |
(N : submodule R M) [is_artinian_ring R] (hN : N.fg) : is_artinian R N := | |
let ⟨s, hs⟩ := hN in | |
begin | |
haveI := classical.dec_eq M, | |
haveI := classical.dec_eq R, | |
letI : is_artinian R R := by apply_instance, | |
have : ∀ x ∈ s, x ∈ N, from λ x hx, hs ▸ submodule.subset_span hx, | |
refine @@is_artinian_of_surjective ((↑s : set M) → R) _ _ _ (pi.module _ _ _) | |
_ _ _ is_artinian_pi, | |
{ fapply linear_map.mk, | |
{ exact λ f, ⟨∑ i in s.attach, f i • i.1, N.sum_mem (λ c _, N.smul_mem _ $ this _ c.2)⟩ }, | |
{ intros f g, apply subtype.eq, | |
change ∑ i in s.attach, (f i + g i) • _ = _, | |
simp only [add_smul, finset.sum_add_distrib], refl }, | |
{ intros c f, apply subtype.eq, | |
change ∑ i in s.attach, (c • f i) • _ = _, | |
simp only [smul_eq_mul, mul_smul], | |
exact finset.smul_sum.symm } }, | |
rintro ⟨n, hn⟩, change n ∈ N at hn, | |
rw [← hs, ← set.image_id ↑s, finsupp.mem_span_image_iff_total] at hn, | |
rcases hn with ⟨l, hl1, hl2⟩, | |
refine ⟨λ x, l x, subtype.ext _⟩, | |
change ∑ i in s.attach, l i • (i : M) = n, | |
rw [@finset.sum_attach M M s _ (λ i, l i • i), ← hl2, | |
finsupp.total_apply, finsupp.sum, eq_comm], | |
refine finset.sum_subset hl1 (λ x _ hx, _), | |
rw [finsupp.not_mem_support_iff.1 hx, zero_smul] | |
end | |
lemma is_artinian_of_fg_of_artinian' {R M} [ring R] [add_comm_group M] [module R M] | |
[is_artinian_ring R] (h : (⊤ : submodule R M).fg) : is_artinian R M := | |
have is_artinian R (⊤ : submodule R M), from is_artinian_of_fg_of_artinian _ h, | |
by exactI is_artinian_of_linear_equiv (linear_equiv.of_top (⊤ : submodule R M) rfl) | |
/-- In a module over a artinian ring, the submodule generated by finitely many vectors is | |
artinian. -/ | |
theorem is_artinian_span_of_finite (R) {M} [ring R] [add_comm_group M] [module R M] | |
[is_artinian_ring R] {A : set M} (hA : A.finite) : is_artinian R (submodule.span R A) := | |
is_artinian_of_fg_of_artinian _ (submodule.fg_def.mpr ⟨A, hA, rfl⟩) | |
theorem function.surjective.is_artinian_ring {R} [ring R] {S} [ring S] {F} [ring_hom_class F R S] | |
{f : F} (hf : function.surjective f) [H : is_artinian_ring R] : is_artinian_ring S := | |
begin | |
rw [is_artinian_ring_iff, is_artinian_iff_well_founded] at H ⊢, | |
exact (ideal.order_embedding_of_surjective f hf).well_founded H, | |
end | |
instance is_artinian_ring_range {R} [ring R] {S} [ring S] (f : R →+* S) [is_artinian_ring R] : | |
is_artinian_ring f.range := | |
f.range_restrict_surjective.is_artinian_ring | |
namespace is_artinian_ring | |
open is_artinian | |
variables {R : Type*} [comm_ring R] [is_artinian_ring R] | |
lemma is_nilpotent_jacobson_bot : is_nilpotent (ideal.jacobson (⊥ : ideal R)) := | |
begin | |
let Jac := ideal.jacobson (⊥ : ideal R), | |
let f : ℕ →o (ideal R)ᵒᵈ := ⟨λ n, Jac ^ n, λ _ _ h, ideal.pow_le_pow h⟩, | |
obtain ⟨n, hn⟩ : ∃ n, ∀ m, n ≤ m → Jac ^ n = Jac ^ m := is_artinian.monotone_stabilizes f, | |
refine ⟨n, _⟩, | |
let J : ideal R := annihilator (Jac ^ n), | |
suffices : J = ⊤, | |
{ have hJ : J • Jac ^ n = ⊥ := annihilator_smul (Jac ^ n), | |
simpa only [this, top_smul, ideal.zero_eq_bot] using hJ }, | |
by_contradiction hJ, change J ≠ ⊤ at hJ, | |
rcases is_artinian.set_has_minimal {J' : ideal R | J < J'} ⟨⊤, hJ.lt_top⟩ | |
with ⟨J', hJJ' : J < J', hJ' : ∀ I, J < I → I ≤ J' → I = J'⟩, | |
rcases set_like.exists_of_lt hJJ' with ⟨x, hxJ', hxJ⟩, | |
obtain rfl : J ⊔ ideal.span {x} = J', | |
{ refine hJ' (J ⊔ ideal.span {x}) _ _, | |
{ rw set_like.lt_iff_le_and_exists, | |
exact ⟨le_sup_left, ⟨x, mem_sup_right (mem_span_singleton_self x), hxJ⟩⟩ }, | |
{ exact (sup_le hJJ'.le (span_le.2 (singleton_subset_iff.2 hxJ'))) } }, | |
have : J ⊔ Jac • ideal.span {x} ≤ J ⊔ ideal.span {x}, | |
from sup_le_sup_left (smul_le.2 (λ _ _ _, submodule.smul_mem _ _)) _, | |
have : Jac * ideal.span {x} ≤ J, --Need version 4 of Nakayamas lemma on Stacks | |
{ classical, by_contradiction H, | |
refine H (smul_sup_le_of_le_smul_of_le_jacobson_bot | |
(fg_span_singleton _) le_rfl (hJ' _ _ this).ge), | |
exact lt_of_le_of_ne le_sup_left (λ h, H $ h.symm ▸ le_sup_right) }, | |
have : ideal.span {x} * Jac ^ (n + 1) ≤ ⊥, | |
calc ideal.span {x} * Jac ^ (n + 1) = ideal.span {x} * Jac * Jac ^ n : | |
by rw [pow_succ, ← mul_assoc] | |
... ≤ J * Jac ^ n : mul_le_mul (by rwa mul_comm) le_rfl | |
... = ⊥ : by simp [J], | |
refine hxJ (mem_annihilator.2 (λ y hy, (mem_bot R).1 _)), | |
refine this (mul_mem_mul (mem_span_singleton_self x) _), | |
rwa [← hn (n + 1) (nat.le_succ _)] | |
end | |
section localization | |
variables (S : submonoid R) (L : Type*) [comm_ring L] [algebra R L] [is_localization S L] | |
include S | |
/-- Localizing an artinian ring can only reduce the amount of elements. -/ | |
theorem localization_surjective : function.surjective (algebra_map R L) := | |
begin | |
intro r', | |
obtain ⟨r₁, s, rfl⟩ := is_localization.mk'_surjective S r', | |
obtain ⟨r₂, h⟩ : ∃ r : R, is_localization.mk' L 1 s = algebra_map R L r, | |
swap, { exact ⟨r₁ * r₂, by rw [is_localization.mk'_eq_mul_mk'_one, map_mul, h]⟩ }, | |
obtain ⟨n, r, hr⟩ := is_artinian.exists_pow_succ_smul_dvd (s : R) (1 : R), | |
use r, | |
rw [smul_eq_mul, smul_eq_mul, pow_succ', mul_assoc] at hr, | |
apply_fun algebra_map R L at hr, | |
simp only [map_mul, ←submonoid.coe_pow] at hr, | |
rw [←is_localization.mk'_one L, is_localization.mk'_eq_iff_eq, one_mul, submonoid.coe_one, | |
←(is_localization.map_units L (s ^ n)).mul_left_cancel hr, map_mul, mul_comm], | |
end | |
lemma localization_artinian : is_artinian_ring L := | |
(localization_surjective S L).is_artinian_ring | |
/-- `is_artinian_ring.localization_artinian` can't be made an instance, as it would make `S` + `R` | |
into metavariables. However, this is safe. -/ | |
instance : is_artinian_ring (localization S) := localization_artinian S _ | |
end localization | |
end is_artinian_ring | |