Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Antoine Labelle. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Antoine Labelle | |
-/ | |
import representation_theory.fdRep | |
import linear_algebra.trace | |
import representation_theory.basic | |
import representation_theory.invariants | |
/-! | |
# Characters of representations | |
This file introduces characters of representation and proves basic lemmas about how characters | |
behave under various operations on representations. | |
# TODO | |
* Once we have the monoidal closed structure on `fdRep k G` and a better API for the rigid | |
structure, `char_dual` and `char_lin_hom` should probably be stated in terms of `Vᘁ` and `ihom V W`. | |
-/ | |
noncomputable theory | |
universes u | |
open linear_map category_theory.monoidal_category representation finite_dimensional | |
open_locale big_operators | |
variables {k G : Type u} [field k] | |
namespace fdRep | |
section monoid | |
variables [monoid G] | |
/-- The character of a representation `V : fdRep k G` is the function associating to `g : G` the | |
trace of the linear map `V.ρ g`.-/ | |
def character (V : fdRep k G) (g : G) := linear_map.trace k V (V.ρ g) | |
lemma char_mul_comm (V : fdRep k G) (g : G) (h : G) : V.character (h * g) = V.character (g * h) := | |
by simp only [trace_mul_comm, character, map_mul] | |
@[simp] lemma char_one (V : fdRep k G) : V.character 1 = finite_dimensional.finrank k V := | |
by simp only [character, map_one, trace_one] | |
/-- The character is multiplicative under the tensor product. -/ | |
@[simp] lemma char_tensor (V W : fdRep k G) : (V ⊗ W).character = V.character * W.character := | |
by { ext g, convert trace_tensor_product' (V.ρ g) (W.ρ g) } | |
/-- The character of isomorphic representations is the same. -/ | |
lemma char_iso {V W : fdRep k G} (i : V ≅ W) : V.character = W.character := | |
by { ext g, simp only [character, fdRep.iso.conj_ρ i], exact (trace_conj' (V.ρ g) _).symm } | |
end monoid | |
section group | |
variables [group G] | |
/-- The character of a representation is constant on conjugacy classes. -/ | |
@[simp] lemma char_conj (V : fdRep k G) (g : G) (h : G) : | |
V.character (h * g * h⁻¹) = V.character g := | |
by rw [char_mul_comm, inv_mul_cancel_left] | |
@[simp] lemma char_dual (V : fdRep k G) (g : G) : (of (dual V.ρ)).character g = V.character g⁻¹ := | |
trace_transpose' (V.ρ g⁻¹) | |
@[simp] lemma char_lin_hom (V W : fdRep k G) (g : G) : | |
(of (lin_hom V.ρ W.ρ)).character g = (V.character g⁻¹) * (W.character g) := | |
by { rw [←char_iso (dual_tensor_iso_lin_hom _ _), char_tensor, pi.mul_apply, char_dual], refl } | |
variables [fintype G] [invertible (fintype.card G : k)] | |
theorem average_char_eq_finrank_invariants (V : fdRep k G) : | |
⅟(fintype.card G : k) • ∑ g : G, V.character g = finrank k (invariants V.ρ) := | |
by { rw ←(is_proj_average_map V.ρ).trace, simp [character, group_algebra.average, _root_.map_sum], } | |
end group | |
end fdRep | |