/- Copyright (c) 2022 Antoine Labelle. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Antoine Labelle -/ import representation_theory.fdRep import linear_algebra.trace import representation_theory.basic import representation_theory.invariants /-! # Characters of representations This file introduces characters of representation and proves basic lemmas about how characters behave under various operations on representations. # TODO * Once we have the monoidal closed structure on `fdRep k G` and a better API for the rigid structure, `char_dual` and `char_lin_hom` should probably be stated in terms of `Vᘁ` and `ihom V W`. -/ noncomputable theory universes u open linear_map category_theory.monoidal_category representation finite_dimensional open_locale big_operators variables {k G : Type u} [field k] namespace fdRep section monoid variables [monoid G] /-- The character of a representation `V : fdRep k G` is the function associating to `g : G` the trace of the linear map `V.ρ g`.-/ def character (V : fdRep k G) (g : G) := linear_map.trace k V (V.ρ g) lemma char_mul_comm (V : fdRep k G) (g : G) (h : G) : V.character (h * g) = V.character (g * h) := by simp only [trace_mul_comm, character, map_mul] @[simp] lemma char_one (V : fdRep k G) : V.character 1 = finite_dimensional.finrank k V := by simp only [character, map_one, trace_one] /-- The character is multiplicative under the tensor product. -/ @[simp] lemma char_tensor (V W : fdRep k G) : (V ⊗ W).character = V.character * W.character := by { ext g, convert trace_tensor_product' (V.ρ g) (W.ρ g) } /-- The character of isomorphic representations is the same. -/ lemma char_iso {V W : fdRep k G} (i : V ≅ W) : V.character = W.character := by { ext g, simp only [character, fdRep.iso.conj_ρ i], exact (trace_conj' (V.ρ g) _).symm } end monoid section group variables [group G] /-- The character of a representation is constant on conjugacy classes. -/ @[simp] lemma char_conj (V : fdRep k G) (g : G) (h : G) : V.character (h * g * h⁻¹) = V.character g := by rw [char_mul_comm, inv_mul_cancel_left] @[simp] lemma char_dual (V : fdRep k G) (g : G) : (of (dual V.ρ)).character g = V.character g⁻¹ := trace_transpose' (V.ρ g⁻¹) @[simp] lemma char_lin_hom (V W : fdRep k G) (g : G) : (of (lin_hom V.ρ W.ρ)).character g = (V.character g⁻¹) * (W.character g) := by { rw [←char_iso (dual_tensor_iso_lin_hom _ _), char_tensor, pi.mul_apply, char_dual], refl } variables [fintype G] [invertible (fintype.card G : k)] theorem average_char_eq_finrank_invariants (V : fdRep k G) : ⅟(fintype.card G : k) • ∑ g : G, V.character g = finrank k (invariants V.ρ) := by { rw ←(is_proj_average_map V.ρ).trace, simp [character, group_algebra.average, _root_.map_sum], } end group end fdRep