Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
7.71 kB
/-
Copyright (c) 2020 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import representation_theory.basic
import representation_theory.Action
import algebra.category.Module.abelian
import algebra.category.Module.colimits
import algebra.category.Module.monoidal
/-!
# `Rep k G` is the category of `k`-linear representations of `G`.
If `V : Rep k G`, there is a coercion that allows you to treat `V` as a type,
and this type comes equipped with a `module k V` instance.
Also `V.ρ` gives the homomorphism `G β†’* (V β†’β‚—[k] V)`.
Conversely, given a homomorphism `ρ : G β†’* (V β†’β‚—[k] V)`,
you can construct the bundled representation as `Rep.of ρ`.
We construct the categorical equivalence `Rep k G β‰Œ Module (monoid_algebra k G)`.
We verify that `Rep k G` is a `k`-linear abelian symmetric monoidal category with all (co)limits.
-/
universes u
open category_theory
open category_theory.limits
/-- The category of `k`-linear representations of a monoid `G`. -/
@[derive [large_category, concrete_category, has_limits, has_colimits,
preadditive, abelian]]
abbreviation Rep (k G : Type u) [ring k] [monoid G] :=
Action (Module.{u} k) (Mon.of G)
instance (k G : Type u) [comm_ring k] [monoid G] : linear k (Rep k G) :=
by apply_instance
namespace Rep
variables {k G : Type u} [comm_ring k] [monoid G]
instance : has_coe_to_sort (Rep k G) (Type u) := concrete_category.has_coe_to_sort _
instance (V : Rep k G) : add_comm_group V :=
by { change add_comm_group ((forgetβ‚‚ (Rep k G) (Module k)).obj V), apply_instance, }
instance (V : Rep k G) : module k V :=
by { change module k ((forgetβ‚‚ (Rep k G) (Module k)).obj V), apply_instance, }
/--
Specialize the existing `Action.ρ`, changing the type to `representation k G V`.
-/
def ρ (V : Rep k G) : representation k G V := V.ρ
/-- Lift an unbundled representation to `Rep`. -/
def of {V : Type u} [add_comm_group V] [module k V] (ρ : G β†’* (V β†’β‚—[k] V)) : Rep k G :=
⟨Module.of k V, ρ⟩
@[simp]
lemma coe_of {V : Type u} [add_comm_group V] [module k V] (ρ : G β†’* (V β†’β‚—[k] V)) :
(of ρ : Type u) = V := rfl
@[simp] lemma of_ρ {V : Type u} [add_comm_group V] [module k V] (ρ : G β†’* (V β†’β‚—[k] V)) :
(of ρ).ρ = ρ := rfl
-- Verify that limits are calculated correctly.
noncomputable example : preserves_limits (forgetβ‚‚ (Rep k G) (Module.{u} k)) :=
by apply_instance
noncomputable example : preserves_colimits (forgetβ‚‚ (Rep k G) (Module.{u} k)) :=
by apply_instance
end Rep
/-!
# The categorical equivalence `Rep k G β‰Œ Module.{u} (monoid_algebra k G)`.
-/
namespace Rep
variables {k G : Type u} [comm_ring k] [monoid G]
-- Verify that the symmetric monoidal structure is available.
example : symmetric_category (Rep k G) := by apply_instance
example : monoidal_preadditive (Rep k G) := by apply_instance
example : monoidal_linear k (Rep k G) := by apply_instance
noncomputable theory
/-- Auxilliary lemma for `to_Module_monoid_algebra`. -/
lemma to_Module_monoid_algebra_map_aux {k G : Type*} [comm_ring k] [monoid G]
(V W : Type*) [add_comm_group V] [add_comm_group W] [module k V] [module k W]
(ρ : G β†’* V β†’β‚—[k] V) (Οƒ : G β†’* W β†’β‚—[k] W)
(f : V β†’β‚—[k] W) (w : βˆ€ (g : G), f.comp (ρ g) = (Οƒ g).comp f)
(r : monoid_algebra k G) (x : V) :
f ((((monoid_algebra.lift k G (V β†’β‚—[k] V)) ρ) r) x) =
(((monoid_algebra.lift k G (W β†’β‚—[k] W)) Οƒ) r) (f x) :=
begin
apply monoid_algebra.induction_on r,
{ intro g,
simp only [one_smul, monoid_algebra.lift_single, monoid_algebra.of_apply],
exact linear_map.congr_fun (w g) x, },
{ intros g h gw hw, simp only [map_add, add_left_inj, linear_map.add_apply, hw, gw], },
{ intros r g w,
simp only [alg_hom.map_smul, w, ring_hom.id_apply,
linear_map.smul_apply, linear_map.map_smulβ‚›β‚—], }
end
/-- Auxilliary definition for `to_Module_monoid_algebra`. -/
def to_Module_monoid_algebra_map {V W : Rep k G} (f : V ⟢ W) :
Module.of (monoid_algebra k G) V.ρ.as_module ⟢ Module.of (monoid_algebra k G) W.ρ.as_module :=
{ map_smul' := λ r x, to_Module_monoid_algebra_map_aux V.V W.V V.ρ W.ρ f.hom f.comm r x,
..f.hom, }
/-- Functorially convert a representation of `G` into a module over `monoid_algebra k G`. -/
def to_Module_monoid_algebra : Rep k G β₯€ Module.{u} (monoid_algebra k G) :=
{ obj := λ V, Module.of _ V.ρ.as_module ,
map := Ξ» V W f, to_Module_monoid_algebra_map f, }
/-- Functorially convert a module over `monoid_algebra k G` into a representation of `G`. -/
def of_Module_monoid_algebra : Module.{u} (monoid_algebra k G) β₯€ Rep k G :=
{ obj := Ξ» M, Rep.of (representation.of_module k G M),
map := Ξ» M N f,
{ hom :=
{ map_smul' := Ξ» r x, f.map_smul (algebra_map k _ r) x,
..f },
comm' := Ξ» g, by { ext, apply f.map_smul, }, }, }.
lemma of_Module_monoid_algebra_obj_coe (M : Module.{u} (monoid_algebra k G)) :
(of_Module_monoid_algebra.obj M : Type u) = restrict_scalars k (monoid_algebra k G) M := rfl
lemma of_Module_monoid_algebra_obj_ρ (M : Module.{u} (monoid_algebra k G)) :
(of_Module_monoid_algebra.obj M).ρ = representation.of_module k G M := rfl
/-- Auxilliary definition for `equivalence_Module_monoid_algebra`. -/
def counit_iso_add_equiv {M : Module.{u} (monoid_algebra k G)} :
((of_Module_monoid_algebra β‹™ to_Module_monoid_algebra).obj M) ≃+ M :=
begin
dsimp [of_Module_monoid_algebra, to_Module_monoid_algebra],
refine (representation.of_module k G β†₯M).as_module_equiv.trans (restrict_scalars.add_equiv _ _ _),
end
/-- Auxilliary definition for `equivalence_Module_monoid_algebra`. -/
def unit_iso_add_equiv {V : Rep k G} :
V ≃+ ((to_Module_monoid_algebra β‹™ of_Module_monoid_algebra).obj V) :=
begin
dsimp [of_Module_monoid_algebra, to_Module_monoid_algebra],
refine V.ρ.as_module_equiv.symm.trans _,
exact (restrict_scalars.add_equiv _ _ _).symm,
end
/-- Auxilliary definition for `equivalence_Module_monoid_algebra`. -/
def counit_iso (M : Module.{u} (monoid_algebra k G)) :
(of_Module_monoid_algebra β‹™ to_Module_monoid_algebra).obj M β‰… M :=
linear_equiv.to_Module_iso'
{ map_smul' := Ξ» r x, begin
dsimp [counit_iso_add_equiv],
simp,
end,
..counit_iso_add_equiv, }
lemma unit_iso_comm (V : Rep k G) (g : G) (x : V) :
unit_iso_add_equiv (((V.ρ) g).to_fun x) =
(((of_Module_monoid_algebra.obj (to_Module_monoid_algebra.obj V)).ρ) g).to_fun
(unit_iso_add_equiv x) :=
begin
dsimp [unit_iso_add_equiv, of_Module_monoid_algebra, to_Module_monoid_algebra],
simp only [add_equiv.apply_eq_iff_eq, add_equiv.apply_symm_apply,
representation.as_module_equiv_symm_map_rho, representation.of_module_as_module_act],
end
/-- Auxilliary definition for `equivalence_Module_monoid_algebra`. -/
def unit_iso (V : Rep k G) :
V β‰… ((to_Module_monoid_algebra β‹™ of_Module_monoid_algebra).obj V) :=
Action.mk_iso (linear_equiv.to_Module_iso'
{ map_smul' := Ξ» r x, begin
dsimp [unit_iso_add_equiv],
simp only [representation.as_module_equiv_symm_map_smul,
restrict_scalars.add_equiv_symm_map_algebra_map_smul],
end,
..unit_iso_add_equiv, })
(Ξ» g, by { ext, apply unit_iso_comm, })
/-- The categorical equivalence `Rep k G β‰Œ Module (monoid_algebra k G)`. -/
def equivalence_Module_monoid_algebra : Rep k G β‰Œ Module.{u} (monoid_algebra k G) :=
{ functor := to_Module_monoid_algebra,
inverse := of_Module_monoid_algebra,
unit_iso := nat_iso.of_components (Ξ» V, unit_iso V) (by tidy),
counit_iso := nat_iso.of_components (Ξ» M, counit_iso M) (by tidy), }
-- TODO Verify that the equivalence with `Module (monoid_algebra k G)` is a monoidal functor.
end Rep