Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Yaël Dillies, Bhavik Mehta. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Yaël Dillies, Bhavik Mehta | |
-/ | |
import data.set.equitable | |
import order.partition.finpartition | |
/-! | |
# Finite equipartitions | |
This file defines finite equipartitions, the partitions whose parts all are the same size up to a | |
difference of `1`. | |
## Main declarations | |
* `finpartition.is_equipartition`: Predicate for a `finpartition` to be an equipartition. | |
-/ | |
open finset fintype | |
namespace finpartition | |
variables {α : Type*} [decidable_eq α] {s t : finset α} (P : finpartition s) | |
/-- An equipartition is a partition whose parts are all the same size, up to a difference of `1`. -/ | |
def is_equipartition : Prop := (P.parts : set (finset α)).equitable_on card | |
lemma is_equipartition_iff_card_parts_eq_average : P.is_equipartition ↔ | |
∀ a : finset α, a ∈ P.parts → a.card = s.card/P.parts.card ∨ a.card = s.card/P.parts.card + 1 := | |
by simp_rw [is_equipartition, finset.equitable_on_iff, P.sum_card_parts] | |
variables {P} | |
lemma _root_.set.subsingleton.is_equipartition (h : (P.parts : set (finset α)).subsingleton) : | |
P.is_equipartition := | |
h.equitable_on _ | |
lemma is_equipartition.card_parts_eq_average (hP : P.is_equipartition) (ht : t ∈ P.parts) : | |
t.card = s.card / P.parts.card ∨ t.card = s.card / P.parts.card + 1 := | |
P.is_equipartition_iff_card_parts_eq_average.1 hP _ ht | |
lemma is_equipartition.average_le_card_part (hP : P.is_equipartition) (ht : t ∈ P.parts) : | |
s.card / P.parts.card ≤ t.card := | |
by { rw ←P.sum_card_parts, exact equitable_on.le hP ht } | |
lemma is_equipartition.card_part_le_average_add_one (hP : P.is_equipartition) (ht : t ∈ P.parts) : | |
t.card ≤ s.card / P.parts.card + 1 := | |
by { rw ←P.sum_card_parts, exact equitable_on.le_add_one hP ht } | |
/-! ### Discrete and indiscrete finpartition -/ | |
variables (s) | |
lemma bot_is_equipartition : (⊥ : finpartition s).is_equipartition := | |
set.equitable_on_iff_exists_eq_eq_add_one.2 ⟨1, by simp⟩ | |
lemma top_is_equipartition : (⊤ : finpartition s).is_equipartition := | |
(parts_top_subsingleton _).is_equipartition | |
lemma indiscrete_is_equipartition {hs : s ≠ ∅} : (indiscrete hs).is_equipartition := | |
by { rw [is_equipartition, indiscrete_parts, coe_singleton], exact set.equitable_on_singleton s _ } | |
end finpartition | |