/- Copyright (c) 2022 Yaël Dillies, Bhavik Mehta. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies, Bhavik Mehta -/ import data.set.equitable import order.partition.finpartition /-! # Finite equipartitions This file defines finite equipartitions, the partitions whose parts all are the same size up to a difference of `1`. ## Main declarations * `finpartition.is_equipartition`: Predicate for a `finpartition` to be an equipartition. -/ open finset fintype namespace finpartition variables {α : Type*} [decidable_eq α] {s t : finset α} (P : finpartition s) /-- An equipartition is a partition whose parts are all the same size, up to a difference of `1`. -/ def is_equipartition : Prop := (P.parts : set (finset α)).equitable_on card lemma is_equipartition_iff_card_parts_eq_average : P.is_equipartition ↔ ∀ a : finset α, a ∈ P.parts → a.card = s.card/P.parts.card ∨ a.card = s.card/P.parts.card + 1 := by simp_rw [is_equipartition, finset.equitable_on_iff, P.sum_card_parts] variables {P} lemma _root_.set.subsingleton.is_equipartition (h : (P.parts : set (finset α)).subsingleton) : P.is_equipartition := h.equitable_on _ lemma is_equipartition.card_parts_eq_average (hP : P.is_equipartition) (ht : t ∈ P.parts) : t.card = s.card / P.parts.card ∨ t.card = s.card / P.parts.card + 1 := P.is_equipartition_iff_card_parts_eq_average.1 hP _ ht lemma is_equipartition.average_le_card_part (hP : P.is_equipartition) (ht : t ∈ P.parts) : s.card / P.parts.card ≤ t.card := by { rw ←P.sum_card_parts, exact equitable_on.le hP ht } lemma is_equipartition.card_part_le_average_add_one (hP : P.is_equipartition) (ht : t ∈ P.parts) : t.card ≤ s.card / P.parts.card + 1 := by { rw ←P.sum_card_parts, exact equitable_on.le_add_one hP ht } /-! ### Discrete and indiscrete finpartition -/ variables (s) lemma bot_is_equipartition : (⊥ : finpartition s).is_equipartition := set.equitable_on_iff_exists_eq_eq_add_one.2 ⟨1, by simp⟩ lemma top_is_equipartition : (⊤ : finpartition s).is_equipartition := (parts_top_subsingleton _).is_equipartition lemma indiscrete_is_equipartition {hs : s ≠ ∅} : (indiscrete hs).is_equipartition := by { rw [is_equipartition, indiscrete_parts, coe_singleton], exact set.equitable_on_singleton s _ } end finpartition