Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
I think it's all done!
fc5e983
raw
history blame
17.7 kB
/-
Copyright (c) 2021 Aaron Anderson, Jesse Michael Han, Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson, Jesse Michael Han, Floris van Doorn
-/
import model_theory.basic
/-!
# Language Maps
Maps between first-order languages in the style of the
[Flypitch project](https://flypitch.github.io/), as well as several important maps between
structures.
## Main Definitions
* A `first_order.language.Lhom`, denoted `L →ᴸ L'`, is a map between languages, sending the symbols
of one to symbols of the same kind and arity in the other.
* A `first_order.language.Lequiv`, denoted `L ≃ᴸ L'`, is an invertible language homomorphism.
* `first_order.language.with_constants` is defined so that if `M` is an `L.Structure` and
`A : set M`, `L.with_constants A`, denoted `L[[A]]`, is a language which adds constant symbols for
elements of `A` to `L`.
## References
For the Flypitch project:
- [J. Han, F. van Doorn, *A formal proof of the independence of the continuum hypothesis*]
[flypitch_cpp]
- [J. Han, F. van Doorn, *A formalization of forcing and the unprovability of
the continuum hypothesis*][flypitch_itp]
-/
universes u v u' v' w w'
namespace first_order
namespace language
open Structure cardinal
open_locale cardinal
variables (L : language.{u v}) (L' : language.{u' v'}) {M : Type w} [L.Structure M]
/-- A language homomorphism maps the symbols of one language to symbols of another. -/
structure Lhom :=
(on_function : ∀{n}, L.functions n → L'.functions n)
(on_relation : ∀{n}, L.relations n → L'.relations n)
infix ` →ᴸ `:10 := Lhom -- \^L
variables {L L'}
namespace Lhom
/-- Defines a map between languages defined with `language.mk₂`. -/
protected def mk₂ {c f₁ f₂ : Type u} {r₁ r₂ : Type v}
(φ₀ : c → L'.constants) (φ₁ : f₁ → L'.functions 1) (φ₂ : f₂ → L'.functions 2)
(φ₁' : r₁ → L'.relations 1) (φ₂' : r₂ → L'.relations 2) :
language.mk₂ c f₁ f₂ r₁ r₂ →ᴸ L' :=
⟨λ n, nat.cases_on n φ₀ (λ n, nat.cases_on n φ₁ (λ n, nat.cases_on n φ₂ (λ _, pempty.elim))),
λ n, nat.cases_on n pempty.elim
(λ n, nat.cases_on n φ₁' (λ n, nat.cases_on n φ₂' (λ _, pempty.elim)))⟩
variables (ϕ : L →ᴸ L')
/-- Pulls a structure back along a language map. -/
def reduct (M : Type*) [L'.Structure M] : L.Structure M :=
{ fun_map := λ n f xs, fun_map (ϕ.on_function f) xs,
rel_map := λ n r xs, rel_map (ϕ.on_relation r) xs }
/-- The identity language homomorphism. -/
@[simps] protected def id (L : language) : L →ᴸ L :=
⟨λn, id, λ n, id⟩
instance : inhabited (L →ᴸ L) := ⟨Lhom.id L⟩
/-- The inclusion of the left factor into the sum of two languages. -/
@[simps] protected def sum_inl : L →ᴸ L.sum L' :=
⟨λn, sum.inl, λ n, sum.inl⟩
/-- The inclusion of the right factor into the sum of two languages. -/
@[simps] protected def sum_inr : L' →ᴸ L.sum L' :=
⟨λn, sum.inr, λ n, sum.inr⟩
variables (L L')
/-- The inclusion of an empty language into any other language. -/
@[simps] protected def of_is_empty [L.is_algebraic] [L.is_relational] : L →ᴸ L' :=
⟨λ n, (is_relational.empty_functions n).elim, λ n, (is_algebraic.empty_relations n).elim⟩
variables {L L'} {L'' : language}
@[ext] protected lemma funext {F G : L →ᴸ L'} (h_fun : F.on_function = G.on_function )
(h_rel : F.on_relation = G.on_relation ) : F = G :=
by {cases F with Ff Fr, cases G with Gf Gr, simp only *, exact and.intro h_fun h_rel}
instance [L.is_algebraic] [L.is_relational] : unique (L →ᴸ L') :=
⟨⟨Lhom.of_is_empty L L'⟩, λ _, Lhom.funext (subsingleton.elim _ _) (subsingleton.elim _ _)⟩
lemma mk₂_funext {c f₁ f₂ : Type u} {r₁ r₂ : Type v} {F G : language.mk₂ c f₁ f₂ r₁ r₂ →ᴸ L'}
(h0 : ∀ (c : (language.mk₂ c f₁ f₂ r₁ r₂).constants), F.on_function c = G.on_function c)
(h1 : ∀ (f : (language.mk₂ c f₁ f₂ r₁ r₂).functions 1), F.on_function f = G.on_function f)
(h2 : ∀ (f : (language.mk₂ c f₁ f₂ r₁ r₂).functions 2), F.on_function f = G.on_function f)
(h1' : ∀ (r : (language.mk₂ c f₁ f₂ r₁ r₂).relations 1), F.on_relation r = G.on_relation r)
(h2' : ∀ (r : (language.mk₂ c f₁ f₂ r₁ r₂).relations 2), F.on_relation r = G.on_relation r) :
F = G :=
Lhom.funext (funext (λ n, nat.cases_on n (funext h0) (λ n, nat.cases_on n (funext h1)
(λ n, nat.cases_on n (funext h2) (λ n, funext (λ f, pempty.elim f))))))
(funext (λ n, nat.cases_on n (funext (λ r, pempty.elim r)) (λ n, nat.cases_on n (funext h1')
(λ n, nat.cases_on n (funext h2') (λ n, funext (λ r, pempty.elim r))))))
/-- The composition of two language homomorphisms. -/
@[simps] def comp (g : L' →ᴸ L'') (f : L →ᴸ L') : L →ᴸ L'' :=
⟨λ n F, g.1 (f.1 F), λ _ R, g.2 (f.2 R)⟩
local infix ` ∘ `:60 := Lhom.comp
@[simp] lemma id_comp (F : L →ᴸ L') : (Lhom.id L') ∘ F = F :=
by {cases F, refl}
@[simp] lemma comp_id (F : L →ᴸ L') : F ∘ (Lhom.id L) = F :=
by {cases F, refl}
lemma comp_assoc {L3 : language} (F: L'' →ᴸ L3) (G : L' →ᴸ L'') (H : L →ᴸ L') :
(F ∘ G) ∘ H = F ∘ (G ∘ H) :=
rfl
section sum_elim
variables (ψ : L'' →ᴸ L')
/-- A language map defined on two factors of a sum. -/
@[simps] protected def sum_elim : L.sum L'' →ᴸ L' :=
{ on_function := λ n, sum.elim (λ f, ϕ.on_function f) (λ f, ψ.on_function f),
on_relation := λ n, sum.elim (λ f, ϕ.on_relation f) (λ f, ψ.on_relation f) }
lemma sum_elim_comp_inl (ψ : L'' →ᴸ L') :
(ϕ.sum_elim ψ) ∘ Lhom.sum_inl = ϕ :=
Lhom.funext (funext (λ _, rfl)) (funext (λ _, rfl))
lemma sum_elim_comp_inr (ψ : L'' →ᴸ L') :
(ϕ.sum_elim ψ) ∘ Lhom.sum_inr = ψ :=
Lhom.funext (funext (λ _, rfl)) (funext (λ _, rfl))
theorem sum_elim_inl_inr :
(Lhom.sum_inl).sum_elim (Lhom.sum_inr) = Lhom.id (L.sum L') :=
Lhom.funext (funext (λ _, sum.elim_inl_inr)) (funext (λ _, sum.elim_inl_inr))
theorem comp_sum_elim {L3 : language} (θ : L' →ᴸ L3) :
θ ∘ (ϕ.sum_elim ψ) = (θ ∘ ϕ).sum_elim (θ ∘ ψ) :=
Lhom.funext (funext (λ n, sum.comp_elim _ _ _)) (funext (λ n, sum.comp_elim _ _ _))
end sum_elim
section sum_map
variables {L₁ L₂ : language} (ψ : L₁ →ᴸ L₂)
/-- The map between two sum-languages induced by maps on the two factors. -/
@[simps] def sum_map : L.sum L₁ →ᴸ L'.sum L₂ :=
{ on_function := λ n, sum.map (λ f, ϕ.on_function f) (λ f, ψ.on_function f),
on_relation := λ n, sum.map (λ f, ϕ.on_relation f) (λ f, ψ.on_relation f) }
@[simp] lemma sum_map_comp_inl :
(ϕ.sum_map ψ) ∘ Lhom.sum_inl = Lhom.sum_inl ∘ ϕ :=
Lhom.funext (funext (λ _, rfl)) (funext (λ _, rfl))
@[simp] lemma sum_map_comp_inr :
(ϕ.sum_map ψ) ∘ Lhom.sum_inr = Lhom.sum_inr ∘ ψ :=
Lhom.funext (funext (λ _, rfl)) (funext (λ _, rfl))
end sum_map
/-- A language homomorphism is injective when all the maps between symbol types are. -/
protected structure injective : Prop :=
(on_function {n} : function.injective (on_function ϕ : L.functions n → L'.functions n))
(on_relation {n} : function.injective (on_relation ϕ : L.relations n → L'.relations n))
/-- A language homomorphism is an expansion on a structure if it commutes with the interpretation of
all symbols on that structure. -/
class is_expansion_on (M : Type*) [L.Structure M] [L'.Structure M] : Prop :=
(map_on_function : ∀ {n} (f : L.functions n) (x : fin n → M),
fun_map (ϕ.on_function f) x = fun_map f x)
(map_on_relation : ∀ {n} (R : L.relations n) (x : fin n → M),
rel_map (ϕ.on_relation R) x = rel_map R x)
@[simp] lemma map_on_function {M : Type*}
[L.Structure M] [L'.Structure M] [ϕ.is_expansion_on M]
{n} (f : L.functions n) (x : fin n → M) :
fun_map (ϕ.on_function f) x = fun_map f x :=
is_expansion_on.map_on_function f x
@[simp] lemma map_on_relation {M : Type*}
[L.Structure M] [L'.Structure M] [ϕ.is_expansion_on M]
{n} (R : L.relations n) (x : fin n → M) :
rel_map (ϕ.on_relation R) x = rel_map R x :=
is_expansion_on.map_on_relation R x
instance id_is_expansion_on (M : Type*) [L.Structure M] : is_expansion_on (Lhom.id L) M :=
⟨λ _ _ _, rfl, λ _ _ _, rfl⟩
instance of_is_empty_is_expansion_on (M : Type*) [L.Structure M] [L'.Structure M]
[L.is_algebraic] [L.is_relational] :
is_expansion_on (Lhom.of_is_empty L L') M :=
⟨λ n, (is_relational.empty_functions n).elim, λ n, (is_algebraic.empty_relations n).elim⟩
instance sum_elim_is_expansion_on {L'' : language} (ψ : L'' →ᴸ L') (M : Type*)
[L.Structure M] [L'.Structure M] [L''.Structure M]
[ϕ.is_expansion_on M] [ψ.is_expansion_on M] :
(ϕ.sum_elim ψ).is_expansion_on M :=
⟨λ _ f _, sum.cases_on f (by simp) (by simp), λ _ R _, sum.cases_on R (by simp) (by simp)⟩
instance sum_map_is_expansion_on {L₁ L₂ : language} (ψ : L₁ →ᴸ L₂) (M : Type*)
[L.Structure M] [L'.Structure M] [L₁.Structure M] [L₂.Structure M]
[ϕ.is_expansion_on M] [ψ.is_expansion_on M] :
(ϕ.sum_map ψ).is_expansion_on M :=
⟨λ _ f _, sum.cases_on f (by simp) (by simp), λ _ R _, sum.cases_on R (by simp) (by simp)⟩
instance sum_inl_is_expansion_on (M : Type*)
[L.Structure M] [L'.Structure M] :
(Lhom.sum_inl : L →ᴸ L.sum L').is_expansion_on M :=
⟨λ _ f _, rfl, λ _ R _, rfl⟩
instance sum_inr_is_expansion_on (M : Type*)
[L.Structure M] [L'.Structure M] :
(Lhom.sum_inr : L' →ᴸ L.sum L').is_expansion_on M :=
⟨λ _ f _, rfl, λ _ R _, rfl⟩
@[simp] lemma fun_map_sum_inl [(L.sum L').Structure M]
[(Lhom.sum_inl : L →ᴸ L.sum L').is_expansion_on M]
{n} {f : L.functions n} {x : fin n → M} :
@fun_map (L.sum L') M _ n (sum.inl f) x = fun_map f x :=
(Lhom.sum_inl : L →ᴸ L.sum L').map_on_function f x
@[simp] lemma fun_map_sum_inr [(L'.sum L).Structure M]
[(Lhom.sum_inr : L →ᴸ L'.sum L).is_expansion_on M]
{n} {f : L.functions n} {x : fin n → M} :
@fun_map (L'.sum L) M _ n (sum.inr f) x = fun_map f x :=
(Lhom.sum_inr : L →ᴸ L'.sum L).map_on_function f x
@[priority 100] instance is_expansion_on_reduct (ϕ : L →ᴸ L') (M : Type*) [L'.Structure M] :
@is_expansion_on L L' ϕ M (ϕ.reduct M) _ :=
begin
letI := ϕ.reduct M,
exact ⟨λ _ f _, rfl, λ _ R _, rfl⟩,
end
end Lhom
/-- A language equivalence maps the symbols of one language to symbols of another bijectively. -/
structure Lequiv (L L' : language) :=
(to_Lhom : L →ᴸ L')
(inv_Lhom : L' →ᴸ L)
(left_inv : inv_Lhom.comp to_Lhom = Lhom.id L)
(right_inv : to_Lhom.comp inv_Lhom = Lhom.id L')
infix ` ≃ᴸ `:10 := Lequiv -- \^L
namespace Lequiv
variable (L)
/-- The identity equivalence from a first-order language to itself. -/
@[simps] protected def refl : L ≃ᴸ L :=
⟨Lhom.id L, Lhom.id L, Lhom.id_comp _, Lhom.id_comp _⟩
variable {L}
instance : inhabited (L ≃ᴸ L) := ⟨Lequiv.refl L⟩
variables {L'' : language} (e' : L' ≃ᴸ L'') (e : L ≃ᴸ L')
/-- The inverse of an equivalence of first-order languages. -/
@[simps] protected def symm : L' ≃ᴸ L :=
⟨e.inv_Lhom, e.to_Lhom, e.right_inv, e.left_inv⟩
/-- The composition of equivalences of first-order languages. -/
@[simps, trans] protected def trans (e : L ≃ᴸ L') (e' : L' ≃ᴸ L'') : L ≃ᴸ L'' :=
⟨e'.to_Lhom.comp e.to_Lhom, e.inv_Lhom.comp e'.inv_Lhom,
by rw [Lhom.comp_assoc, ← Lhom.comp_assoc e'.inv_Lhom, e'.left_inv, Lhom.id_comp, e.left_inv],
by rw [Lhom.comp_assoc, ← Lhom.comp_assoc e.to_Lhom, e.right_inv, Lhom.id_comp, e'.right_inv]⟩
end Lequiv
section constants_on
variables (α : Type u')
/-- A language with constants indexed by a type. -/
@[simp] def constants_on : language.{u' 0} :=
language.mk₂ α pempty pempty pempty pempty
variables {α}
lemma constants_on_constants : (constants_on α).constants = α := rfl
instance is_algebraic_constants_on : is_algebraic (constants_on α) :=
language.is_algebraic_mk₂
instance is_relational_constants_on [ie : is_empty α] : is_relational (constants_on α) :=
language.is_relational_mk₂
instance is_empty_functions_constants_on_succ {n : ℕ} :
is_empty ((constants_on α).functions (n + 1)) :=
nat.cases_on n pempty.is_empty (λ n, nat.cases_on n pempty.is_empty (λ _, pempty.is_empty))
lemma card_constants_on : (constants_on α).card = # α :=
by simp
/-- Gives a `constants_on α` structure to a type by assigning each constant a value. -/
def constants_on.Structure (f : α → M) : (constants_on α).Structure M :=
Structure.mk₂ f pempty.elim pempty.elim pempty.elim pempty.elim
variables {β : Type v'}
/-- A map between index types induces a map between constant languages. -/
def Lhom.constants_on_map (f : α → β) : (constants_on α) →ᴸ (constants_on β) :=
Lhom.mk₂ f pempty.elim pempty.elim pempty.elim pempty.elim
lemma constants_on_map_is_expansion_on {f : α → β} {fα : α → M} {fβ : β → M}
(h : fβ ∘ f = fα) :
@Lhom.is_expansion_on _ _ (Lhom.constants_on_map f) M
(constants_on.Structure fα) (constants_on.Structure fβ) :=
begin
letI := constants_on.Structure fα,
letI := constants_on.Structure fβ,
exact ⟨λ n, nat.cases_on n (λ F x, (congr_fun h F : _)) (λ n F, is_empty_elim F),
λ _ R, is_empty_elim R⟩
end
end constants_on
section with_constants
variable (L)
section
variables (α : Type w')
/-- Extends a language with a constant for each element of a parameter set in `M`. -/
def with_constants : language.{(max u w') v} := L.sum (constants_on α)
localized "notation L`[[`:95 α`]]`:90 := L.with_constants α" in first_order
@[simp] lemma card_with_constants :
(L[[α]]).card = cardinal.lift.{w'} L.card + cardinal.lift.{max u v} (# α) :=
by rw [with_constants, card_sum, card_constants_on]
/-- The language map adding constants. -/
@[simps] def Lhom_with_constants : L →ᴸ L[[α]] := Lhom.sum_inl
variables {α}
/-- The constant symbol indexed by a particular element. -/
protected def con (a : α) : L[[α]].constants := sum.inr a
variables {L} (α)
/-- Adds constants to a language map. -/
def Lhom.add_constants {L' : language} (φ : L →ᴸ L') :
L[[α]] →ᴸ L'[[α]] := φ.sum_map (Lhom.id _)
instance params_Structure (A : set α) : (constants_on A).Structure α := constants_on.Structure coe
variables (L) (α)
/-- The language map removing an empty constant set. -/
@[simps] def Lequiv.add_empty_constants [ie : is_empty α] : L ≃ᴸ L[[α]] :=
{ to_Lhom := Lhom_with_constants L α,
inv_Lhom := Lhom.sum_elim (Lhom.id L) (Lhom.of_is_empty (constants_on α) L),
left_inv := by rw [Lhom_with_constants, Lhom.sum_elim_comp_inl],
right_inv := by { simp only [Lhom.comp_sum_elim, Lhom_with_constants, Lhom.comp_id],
exact trans (congr rfl (subsingleton.elim _ _)) Lhom.sum_elim_inl_inr } }
variables {α} {β : Type*}
@[simp] lemma with_constants_fun_map_sum_inl [L[[α]].Structure M]
[(Lhom_with_constants L α).is_expansion_on M]
{n} {f : L.functions n} {x : fin n → M} :
@fun_map (L[[α]]) M _ n (sum.inl f) x = fun_map f x :=
(Lhom_with_constants L α).map_on_function f x
@[simp] lemma with_constants_rel_map_sum_inl [L[[α]].Structure M]
[(Lhom_with_constants L α).is_expansion_on M]
{n} {R : L.relations n} {x : fin n → M} :
@rel_map (L[[α]]) M _ n (sum.inl R) x = rel_map R x :=
(Lhom_with_constants L α).map_on_relation R x
/-- The language map extending the constant set. -/
def Lhom_with_constants_map (f : α → β) : L[[α]] →ᴸ L[[β]] :=
Lhom.sum_map (Lhom.id L) (Lhom.constants_on_map f)
@[simp] lemma Lhom.map_constants_comp_sum_inl {f : α → β} :
(L.Lhom_with_constants_map f).comp (Lhom.sum_inl) = L.Lhom_with_constants β :=
by ext n f R; refl
end
open_locale first_order
instance constants_on_self_Structure : (constants_on M).Structure M :=
constants_on.Structure id
instance with_constants_self_Structure : L[[M]].Structure M :=
language.sum_Structure _ _ M
instance with_constants_self_expansion : (Lhom_with_constants L M).is_expansion_on M :=
⟨λ _ _ _, rfl, λ _ _ _, rfl⟩
variables (α : Type*) [(constants_on α).Structure M]
instance with_constants_Structure : L[[α]].Structure M :=
language.sum_Structure _ _ _
instance with_constants_expansion : (L.Lhom_with_constants α).is_expansion_on M :=
⟨λ _ _ _, rfl, λ _ _ _, rfl⟩
instance add_empty_constants_is_expansion_on' :
(Lequiv.add_empty_constants L (∅ : set M)).to_Lhom.is_expansion_on M :=
L.with_constants_expansion _
instance add_empty_constants_symm_is_expansion_on :
(Lequiv.add_empty_constants L (∅ : set M)).symm.to_Lhom.is_expansion_on M :=
Lhom.sum_elim_is_expansion_on _ _ _
instance add_constants_expansion {L' : language} [L'.Structure M] (φ : L →ᴸ L')
[φ.is_expansion_on M] :
(φ.add_constants α).is_expansion_on M :=
Lhom.sum_map_is_expansion_on _ _ M
@[simp] lemma with_constants_fun_map_sum_inr {a : α} {x : fin 0 → M} :
@fun_map (L[[α]]) M _ 0 (sum.inr a : L[[α]].functions 0) x = L.con a :=
begin
rw unique.eq_default x,
exact (Lhom.sum_inr : (constants_on α) →ᴸ L.sum _).map_on_function _ _,
end
variables {α} (A : set M)
@[simp] lemma coe_con {a : A} : ((L.con a) : M) = a := rfl
variables {A} {B : set M} (h : A ⊆ B)
instance constants_on_map_inclusion_is_expansion_on :
(Lhom.constants_on_map (set.inclusion h)).is_expansion_on M :=
constants_on_map_is_expansion_on rfl
instance map_constants_inclusion_is_expansion_on :
(L.Lhom_with_constants_map (set.inclusion h)).is_expansion_on M :=
Lhom.sum_map_is_expansion_on _ _ _
end with_constants
end language
end first_order