Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Aaron Anderson. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Aaron Anderson | |
-/ | |
import model_theory.satisfiability | |
import combinatorics.simple_graph.basic | |
/-! | |
# First-Ordered Structures in Graph Theory | |
This file defines first-order languages, structures, and theories in graph theory. | |
## Main Definitions | |
* `first_order.language.graph` is the language consisting of a single relation representing | |
adjacency. | |
* `simple_graph.Structure` is the first-order structure corresponding to a given simple graph. | |
* `first_order.language.Theory.simple_graph` is the theory of simple graphs. | |
* `first_order.language.simple_graph_of_structure` gives the simple graph corresponding to a model | |
of the theory of simple graphs. | |
-/ | |
universes u v w w' | |
namespace first_order | |
namespace language | |
open_locale first_order | |
open Structure | |
variables {L : language.{u v}} {α : Type w} {V : Type w'} {n : ℕ} | |
/-! ### Simple Graphs -/ | |
/-- The language consisting of a single relation representing adjacency. -/ | |
protected def graph : language := | |
language.mk₂ empty empty empty empty unit | |
/-- The symbol representing the adjacency relation. -/ | |
def adj : language.graph.relations 2 := unit.star | |
/-- Any simple graph can be thought of as a structure in the language of graphs. -/ | |
def _root_.simple_graph.Structure (G : simple_graph V) : | |
language.graph.Structure V := | |
Structure.mk₂ empty.elim empty.elim empty.elim empty.elim (λ _, G.adj) | |
namespace graph | |
instance : is_relational (language.graph) := language.is_relational_mk₂ | |
instance : subsingleton (language.graph.relations n) := | |
language.subsingleton_mk₂_relations | |
end graph | |
/-- The theory of simple graphs. -/ | |
protected def Theory.simple_graph : language.graph.Theory := | |
{adj.irreflexive, adj.symmetric} | |
@[simp] lemma Theory.simple_graph_model_iff [language.graph.Structure V] : | |
V ⊨ Theory.simple_graph ↔ | |
irreflexive (λ x y : V, rel_map adj ![x,y]) ∧ symmetric (λ x y : V, rel_map adj ![x,y]) := | |
by simp [Theory.simple_graph] | |
instance simple_graph_model (G : simple_graph V) : | |
@Theory.model _ V G.Structure Theory.simple_graph := | |
begin | |
simp only [Theory.simple_graph_model_iff, rel_map_apply₂], | |
exact ⟨G.loopless, G.symm⟩, | |
end | |
variables (V) | |
/-- Any model of the theory of simple graphs represents a simple graph. -/ | |
@[simps] def simple_graph_of_structure [language.graph.Structure V] [V ⊨ Theory.simple_graph] : | |
simple_graph V := | |
{ adj := λ x y, rel_map adj ![x,y], | |
symm := relations.realize_symmetric.1 (Theory.realize_sentence_of_mem Theory.simple_graph | |
(set.mem_insert_of_mem _ (set.mem_singleton _))), | |
loopless := relations.realize_irreflexive.1 (Theory.realize_sentence_of_mem Theory.simple_graph | |
(set.mem_insert _ _)) } | |
variables {V} | |
@[simp] lemma _root_.simple_graph.simple_graph_of_structure (G : simple_graph V) : | |
@simple_graph_of_structure V G.Structure _ = G := | |
by { ext, refl } | |
@[simp] lemma Structure_simple_graph_of_structure | |
[S : language.graph.Structure V] [V ⊨ Theory.simple_graph] : | |
(simple_graph_of_structure V).Structure = S := | |
begin | |
ext n f xs, | |
{ exact (is_relational.empty_functions n).elim f }, | |
{ ext n r xs, | |
rw iff_eq_eq, | |
cases n, | |
{ exact r.elim }, | |
{ cases n, | |
{ exact r.elim }, | |
{ cases n, | |
{ cases r, | |
change rel_map adj ![xs 0, xs 1] = _, | |
refine congr rfl (funext _), | |
simp [fin.forall_fin_two], }, | |
{ exact r.elim } } } } | |
end | |
theorem Theory.simple_graph_is_satisfiable : | |
Theory.is_satisfiable Theory.simple_graph := | |
⟨@Theory.Model.of _ _ unit (simple_graph.Structure ⊥) _ _⟩ | |
end language | |
end first_order | |