/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import model_theory.satisfiability import combinatorics.simple_graph.basic /-! # First-Ordered Structures in Graph Theory This file defines first-order languages, structures, and theories in graph theory. ## Main Definitions * `first_order.language.graph` is the language consisting of a single relation representing adjacency. * `simple_graph.Structure` is the first-order structure corresponding to a given simple graph. * `first_order.language.Theory.simple_graph` is the theory of simple graphs. * `first_order.language.simple_graph_of_structure` gives the simple graph corresponding to a model of the theory of simple graphs. -/ universes u v w w' namespace first_order namespace language open_locale first_order open Structure variables {L : language.{u v}} {α : Type w} {V : Type w'} {n : ℕ} /-! ### Simple Graphs -/ /-- The language consisting of a single relation representing adjacency. -/ protected def graph : language := language.mk₂ empty empty empty empty unit /-- The symbol representing the adjacency relation. -/ def adj : language.graph.relations 2 := unit.star /-- Any simple graph can be thought of as a structure in the language of graphs. -/ def _root_.simple_graph.Structure (G : simple_graph V) : language.graph.Structure V := Structure.mk₂ empty.elim empty.elim empty.elim empty.elim (λ _, G.adj) namespace graph instance : is_relational (language.graph) := language.is_relational_mk₂ instance : subsingleton (language.graph.relations n) := language.subsingleton_mk₂_relations end graph /-- The theory of simple graphs. -/ protected def Theory.simple_graph : language.graph.Theory := {adj.irreflexive, adj.symmetric} @[simp] lemma Theory.simple_graph_model_iff [language.graph.Structure V] : V ⊨ Theory.simple_graph ↔ irreflexive (λ x y : V, rel_map adj ![x,y]) ∧ symmetric (λ x y : V, rel_map adj ![x,y]) := by simp [Theory.simple_graph] instance simple_graph_model (G : simple_graph V) : @Theory.model _ V G.Structure Theory.simple_graph := begin simp only [Theory.simple_graph_model_iff, rel_map_apply₂], exact ⟨G.loopless, G.symm⟩, end variables (V) /-- Any model of the theory of simple graphs represents a simple graph. -/ @[simps] def simple_graph_of_structure [language.graph.Structure V] [V ⊨ Theory.simple_graph] : simple_graph V := { adj := λ x y, rel_map adj ![x,y], symm := relations.realize_symmetric.1 (Theory.realize_sentence_of_mem Theory.simple_graph (set.mem_insert_of_mem _ (set.mem_singleton _))), loopless := relations.realize_irreflexive.1 (Theory.realize_sentence_of_mem Theory.simple_graph (set.mem_insert _ _)) } variables {V} @[simp] lemma _root_.simple_graph.simple_graph_of_structure (G : simple_graph V) : @simple_graph_of_structure V G.Structure _ = G := by { ext, refl } @[simp] lemma Structure_simple_graph_of_structure [S : language.graph.Structure V] [V ⊨ Theory.simple_graph] : (simple_graph_of_structure V).Structure = S := begin ext n f xs, { exact (is_relational.empty_functions n).elim f }, { ext n r xs, rw iff_eq_eq, cases n, { exact r.elim }, { cases n, { exact r.elim }, { cases n, { cases r, change rel_map adj ![xs 0, xs 1] = _, refine congr rfl (funext _), simp [fin.forall_fin_two], }, { exact r.elim } } } } end theorem Theory.simple_graph_is_satisfiable : Theory.is_satisfiable Theory.simple_graph := ⟨@Theory.Model.of _ _ unit (simple_graph.Structure ⊥) _ _⟩ end language end first_order