Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Aaron Anderson. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Aaron Anderson | |
-/ | |
import model_theory.substructures | |
/-! | |
# Finitely Generated First-Order Structures | |
This file defines what it means for a first-order (sub)structure to be finitely or countably | |
generated, similarly to other finitely-generated objects in the algebra library. | |
## Main Definitions | |
* `first_order.language.substructure.fg` indicates that a substructure is finitely generated. | |
* `first_order.language.Structure.fg` indicates that a structure is finitely generated. | |
* `first_order.language.substructure.cg` indicates that a substructure is countably generated. | |
* `first_order.language.Structure.cg` indicates that a structure is countably generated. | |
## TODO | |
Develop a more unified definition of finite generation using the theory of closure operators, or use | |
this definition of finite generation to define the others. | |
-/ | |
open_locale first_order | |
open set | |
namespace first_order | |
namespace language | |
open Structure | |
variables {L : language} {M : Type*} [L.Structure M] | |
namespace substructure | |
/-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ | |
def fg (N : L.substructure M) : Prop := ∃ S : finset M, closure L ↑S = N | |
theorem fg_def {N : L.substructure M} : | |
N.fg ↔ ∃ S : set M, S.finite ∧ closure L S = N := | |
⟨λ ⟨t, h⟩, ⟨_, finset.finite_to_set t, h⟩, begin | |
rintro ⟨t', h, rfl⟩, | |
rcases finite.exists_finset_coe h with ⟨t, rfl⟩, | |
exact ⟨t, rfl⟩ | |
end⟩ | |
lemma fg_iff_exists_fin_generating_family {N : L.substructure M} : | |
N.fg ↔ ∃ (n : ℕ) (s : fin n → M), closure L (range s) = N := | |
begin | |
rw fg_def, | |
split, | |
{ rintros ⟨S, Sfin, hS⟩, | |
obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding, | |
exact ⟨n, f, hS⟩, }, | |
{ rintros ⟨n, s, hs⟩, | |
refine ⟨range s, finite_range s, hs⟩ }, | |
end | |
theorem fg_bot : (⊥ : L.substructure M).fg := | |
⟨∅, by rw [finset.coe_empty, closure_empty]⟩ | |
theorem fg_closure {s : set M} (hs : s.finite) : fg (closure L s) := | |
⟨hs.to_finset, by rw [hs.coe_to_finset]⟩ | |
theorem fg_closure_singleton (x : M) : fg (closure L ({x} : set M)) := | |
fg_closure (finite_singleton x) | |
theorem fg.sup {N₁ N₂ : L.substructure M} | |
(hN₁ : N₁.fg) (hN₂ : N₂.fg) : (N₁ ⊔ N₂).fg := | |
let ⟨t₁, ht₁⟩ := fg_def.1 hN₁, ⟨t₂, ht₂⟩ := fg_def.1 hN₂ in | |
fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ | |
theorem fg.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.substructure M} (hs : s.fg) : | |
(s.map f).fg := | |
let ⟨t, ht⟩ := fg_def.1 hs in fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ | |
theorem fg.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.substructure M} | |
(hs : (s.map f.to_hom).fg) : s.fg := | |
begin | |
rcases hs with ⟨t, h⟩, | |
rw fg_def, | |
refine ⟨f ⁻¹' t, t.finite_to_set.preimage (f.injective.inj_on _), _⟩, | |
have hf : function.injective f.to_hom := f.injective, | |
refine map_injective_of_injective hf _, | |
rw [← h, map_closure, embedding.coe_to_hom, image_preimage_eq_of_subset], | |
intros x hx, | |
have h' := subset_closure hx, | |
rw h at h', | |
exact hom.map_le_range h' | |
end | |
/-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`. | |
-/ | |
def cg (N : L.substructure M) : Prop := ∃ S : set M, S.countable ∧ closure L S = N | |
theorem cg_def {N : L.substructure M} : | |
N.cg ↔ ∃ S : set M, S.countable ∧ closure L S = N := iff.refl _ | |
theorem fg.cg {N : L.substructure M} (h : N.fg) : N.cg := | |
begin | |
obtain ⟨s, hf, rfl⟩ := fg_def.1 h, | |
refine ⟨s, hf.countable, rfl⟩, | |
end | |
lemma cg_iff_empty_or_exists_nat_generating_family {N : L.substructure M} : | |
N.cg ↔ (↑N = (∅ : set M)) ∨ ∃ (s : ℕ → M), closure L (range s) = N := | |
begin | |
rw cg_def, | |
split, | |
{ rintros ⟨S, Scount, hS⟩, | |
cases eq_empty_or_nonempty ↑N with h h, | |
{ exact or.intro_left _ h }, | |
obtain ⟨f, h'⟩ := (Scount.union (set.countable_singleton h.some)).exists_eq_range | |
(singleton_nonempty h.some).inr, | |
refine or.intro_right _ ⟨f, _⟩, | |
rw [← h', closure_union, hS, sup_eq_left, closure_le], | |
exact singleton_subset_iff.2 h.some_mem }, | |
{ intro h, | |
cases h with h h, | |
{ refine ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩, | |
rw [← set_like.coe_subset_coe, h], | |
exact empty_subset _ }, | |
{ obtain ⟨f, rfl⟩ := h, | |
exact ⟨range f, countable_range _, rfl⟩ } }, | |
end | |
theorem cg_bot : (⊥ : L.substructure M).cg := fg_bot.cg | |
theorem cg_closure {s : set M} (hs : s.countable) : cg (closure L s) := | |
⟨s, hs, rfl⟩ | |
theorem cg_closure_singleton (x : M) : cg (closure L ({x} : set M)) := (fg_closure_singleton x).cg | |
theorem cg.sup {N₁ N₂ : L.substructure M} | |
(hN₁ : N₁.cg) (hN₂ : N₂.cg) : (N₁ ⊔ N₂).cg := | |
let ⟨t₁, ht₁⟩ := cg_def.1 hN₁, ⟨t₂, ht₂⟩ := cg_def.1 hN₂ in | |
cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ | |
theorem cg.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.substructure M} (hs : s.cg) : | |
(s.map f).cg := | |
let ⟨t, ht⟩ := cg_def.1 hs in cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ | |
theorem cg.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.substructure M} | |
(hs : (s.map f.to_hom).cg) : s.cg := | |
begin | |
rcases hs with ⟨t, h1, h2⟩, | |
rw cg_def, | |
refine ⟨f ⁻¹' t, h1.preimage f.injective, _⟩, | |
have hf : function.injective f.to_hom := f.injective, | |
refine map_injective_of_injective hf _, | |
rw [← h2, map_closure, embedding.coe_to_hom, image_preimage_eq_of_subset], | |
intros x hx, | |
have h' := subset_closure hx, | |
rw h2 at h', | |
exact hom.map_le_range h' | |
end | |
theorem cg_iff_countable [L.countable_functions] {s : L.substructure M} : | |
s.cg ↔ nonempty (encodable s) := | |
begin | |
refine ⟨_, λ h, ⟨s, h, s.closure_eq⟩⟩, | |
rintro ⟨s, h, rfl⟩, | |
exact h.substructure_closure L | |
end | |
end substructure | |
open substructure | |
namespace Structure | |
variables (L) (M) | |
/-- A structure is finitely generated if it is the closure of a finite subset. -/ | |
class fg : Prop := (out : (⊤ : L.substructure M).fg) | |
/-- A structure is countably generated if it is the closure of a countable subset. -/ | |
class cg : Prop := (out : (⊤ : L.substructure M).cg) | |
variables {L M} | |
lemma fg_def : fg L M ↔ (⊤ : L.substructure M).fg := ⟨λ h, h.1, λ h, ⟨h⟩⟩ | |
/-- An equivalent expression of `Structure.fg` in terms of `set.finite` instead of `finset`. -/ | |
lemma fg_iff : fg L M ↔ ∃ S : set M, S.finite ∧ closure L S = (⊤ : L.substructure M) := | |
by rw [fg_def, substructure.fg_def] | |
lemma fg.range {N : Type*} [L.Structure N] (h : fg L M) (f : M →[L] N) : | |
f.range.fg := | |
begin | |
rw [hom.range_eq_map], | |
exact (fg_def.1 h).map f, | |
end | |
lemma fg.map_of_surjective {N : Type*} [L.Structure N] (h : fg L M) (f : M →[L] N) | |
(hs : function.surjective f) : | |
fg L N := | |
begin | |
rw ← hom.range_eq_top at hs, | |
rw [fg_def, ← hs], | |
exact h.range f, | |
end | |
lemma cg_def : cg L M ↔ (⊤ : L.substructure M).cg := ⟨λ h, h.1, λ h, ⟨h⟩⟩ | |
/-- An equivalent expression of `Structure.cg`. -/ | |
lemma cg_iff : cg L M ↔ ∃ S : set M, S.countable ∧ closure L S = (⊤ : L.substructure M) := | |
by rw [cg_def, substructure.cg_def] | |
lemma cg.range {N : Type*} [L.Structure N] (h : cg L M) (f : M →[L] N) : | |
f.range.cg := | |
begin | |
rw [hom.range_eq_map], | |
exact (cg_def.1 h).map f, | |
end | |
lemma cg.map_of_surjective {N : Type*} [L.Structure N] (h : cg L M) (f : M →[L] N) | |
(hs : function.surjective f) : | |
cg L N := | |
begin | |
rw ← hom.range_eq_top at hs, | |
rw [cg_def, ← hs], | |
exact h.range f, | |
end | |
lemma cg_iff_countable [L.countable_functions] : | |
cg L M ↔ nonempty (encodable M) := | |
by rw [cg_def, cg_iff_countable, cardinal.encodable_iff, cardinal.encodable_iff, | |
top_equiv.to_equiv.cardinal_eq] | |
lemma fg.cg (h : fg L M) : cg L M := | |
cg_def.2 (fg_def.1 h).cg | |
@[priority 100] instance cg_of_fg [h : fg L M] : cg L M := h.cg | |
end Structure | |
lemma equiv.fg_iff {N : Type*} [L.Structure N] (f : M ≃[L] N) : | |
Structure.fg L M ↔ Structure.fg L N := | |
⟨λ h, h.map_of_surjective f.to_hom f.to_equiv.surjective, | |
λ h, h.map_of_surjective f.symm.to_hom f.to_equiv.symm.surjective⟩ | |
lemma substructure.fg_iff_Structure_fg (S : L.substructure M) : | |
S.fg ↔ Structure.fg L S := | |
begin | |
rw Structure.fg_def, | |
refine ⟨λ h, fg.of_map_embedding S.subtype _, λ h, _⟩, | |
{ rw [← hom.range_eq_map, range_subtype], | |
exact h }, | |
{ have h := h.map S.subtype.to_hom, | |
rw [← hom.range_eq_map, range_subtype] at h, | |
exact h } | |
end | |
lemma equiv.cg_iff {N : Type*} [L.Structure N] (f : M ≃[L] N) : | |
Structure.cg L M ↔ Structure.cg L N := | |
⟨λ h, h.map_of_surjective f.to_hom f.to_equiv.surjective, | |
λ h, h.map_of_surjective f.symm.to_hom f.to_equiv.symm.surjective⟩ | |
lemma substructure.cg_iff_Structure_cg (S : L.substructure M) : | |
S.cg ↔ Structure.cg L S := | |
begin | |
rw Structure.cg_def, | |
refine ⟨λ h, cg.of_map_embedding S.subtype _, λ h, _⟩, | |
{ rw [← hom.range_eq_map, range_subtype], | |
exact h }, | |
{ have h := h.map S.subtype.to_hom, | |
rw [← hom.range_eq_map, range_subtype] at h, | |
exact h } | |
end | |
end language | |
end first_order | |