/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import model_theory.substructures /-! # Finitely Generated First-Order Structures This file defines what it means for a first-order (sub)structure to be finitely or countably generated, similarly to other finitely-generated objects in the algebra library. ## Main Definitions * `first_order.language.substructure.fg` indicates that a substructure is finitely generated. * `first_order.language.Structure.fg` indicates that a structure is finitely generated. * `first_order.language.substructure.cg` indicates that a substructure is countably generated. * `first_order.language.Structure.cg` indicates that a structure is countably generated. ## TODO Develop a more unified definition of finite generation using the theory of closure operators, or use this definition of finite generation to define the others. -/ open_locale first_order open set namespace first_order namespace language open Structure variables {L : language} {M : Type*} [L.Structure M] namespace substructure /-- A substructure of `M` is finitely generated if it is the closure of a finite subset of `M`. -/ def fg (N : L.substructure M) : Prop := ∃ S : finset M, closure L ↑S = N theorem fg_def {N : L.substructure M} : N.fg ↔ ∃ S : set M, S.finite ∧ closure L S = N := ⟨λ ⟨t, h⟩, ⟨_, finset.finite_to_set t, h⟩, begin rintro ⟨t', h, rfl⟩, rcases finite.exists_finset_coe h with ⟨t, rfl⟩, exact ⟨t, rfl⟩ end⟩ lemma fg_iff_exists_fin_generating_family {N : L.substructure M} : N.fg ↔ ∃ (n : ℕ) (s : fin n → M), closure L (range s) = N := begin rw fg_def, split, { rintros ⟨S, Sfin, hS⟩, obtain ⟨n, f, rfl⟩ := Sfin.fin_embedding, exact ⟨n, f, hS⟩, }, { rintros ⟨n, s, hs⟩, refine ⟨range s, finite_range s, hs⟩ }, end theorem fg_bot : (⊥ : L.substructure M).fg := ⟨∅, by rw [finset.coe_empty, closure_empty]⟩ theorem fg_closure {s : set M} (hs : s.finite) : fg (closure L s) := ⟨hs.to_finset, by rw [hs.coe_to_finset]⟩ theorem fg_closure_singleton (x : M) : fg (closure L ({x} : set M)) := fg_closure (finite_singleton x) theorem fg.sup {N₁ N₂ : L.substructure M} (hN₁ : N₁.fg) (hN₂ : N₂.fg) : (N₁ ⊔ N₂).fg := let ⟨t₁, ht₁⟩ := fg_def.1 hN₁, ⟨t₂, ht₂⟩ := fg_def.1 hN₂ in fg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ theorem fg.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.substructure M} (hs : s.fg) : (s.map f).fg := let ⟨t, ht⟩ := fg_def.1 hs in fg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ theorem fg.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.substructure M} (hs : (s.map f.to_hom).fg) : s.fg := begin rcases hs with ⟨t, h⟩, rw fg_def, refine ⟨f ⁻¹' t, t.finite_to_set.preimage (f.injective.inj_on _), _⟩, have hf : function.injective f.to_hom := f.injective, refine map_injective_of_injective hf _, rw [← h, map_closure, embedding.coe_to_hom, image_preimage_eq_of_subset], intros x hx, have h' := subset_closure hx, rw h at h', exact hom.map_le_range h' end /-- A substructure of `M` is countably generated if it is the closure of a countable subset of `M`. -/ def cg (N : L.substructure M) : Prop := ∃ S : set M, S.countable ∧ closure L S = N theorem cg_def {N : L.substructure M} : N.cg ↔ ∃ S : set M, S.countable ∧ closure L S = N := iff.refl _ theorem fg.cg {N : L.substructure M} (h : N.fg) : N.cg := begin obtain ⟨s, hf, rfl⟩ := fg_def.1 h, refine ⟨s, hf.countable, rfl⟩, end lemma cg_iff_empty_or_exists_nat_generating_family {N : L.substructure M} : N.cg ↔ (↑N = (∅ : set M)) ∨ ∃ (s : ℕ → M), closure L (range s) = N := begin rw cg_def, split, { rintros ⟨S, Scount, hS⟩, cases eq_empty_or_nonempty ↑N with h h, { exact or.intro_left _ h }, obtain ⟨f, h'⟩ := (Scount.union (set.countable_singleton h.some)).exists_eq_range (singleton_nonempty h.some).inr, refine or.intro_right _ ⟨f, _⟩, rw [← h', closure_union, hS, sup_eq_left, closure_le], exact singleton_subset_iff.2 h.some_mem }, { intro h, cases h with h h, { refine ⟨∅, countable_empty, closure_eq_of_le (empty_subset _) _⟩, rw [← set_like.coe_subset_coe, h], exact empty_subset _ }, { obtain ⟨f, rfl⟩ := h, exact ⟨range f, countable_range _, rfl⟩ } }, end theorem cg_bot : (⊥ : L.substructure M).cg := fg_bot.cg theorem cg_closure {s : set M} (hs : s.countable) : cg (closure L s) := ⟨s, hs, rfl⟩ theorem cg_closure_singleton (x : M) : cg (closure L ({x} : set M)) := (fg_closure_singleton x).cg theorem cg.sup {N₁ N₂ : L.substructure M} (hN₁ : N₁.cg) (hN₂ : N₂.cg) : (N₁ ⊔ N₂).cg := let ⟨t₁, ht₁⟩ := cg_def.1 hN₁, ⟨t₂, ht₂⟩ := cg_def.1 hN₂ in cg_def.2 ⟨t₁ ∪ t₂, ht₁.1.union ht₂.1, by rw [closure_union, ht₁.2, ht₂.2]⟩ theorem cg.map {N : Type*} [L.Structure N] (f : M →[L] N) {s : L.substructure M} (hs : s.cg) : (s.map f).cg := let ⟨t, ht⟩ := cg_def.1 hs in cg_def.2 ⟨f '' t, ht.1.image _, by rw [closure_image, ht.2]⟩ theorem cg.of_map_embedding {N : Type*} [L.Structure N] (f : M ↪[L] N) {s : L.substructure M} (hs : (s.map f.to_hom).cg) : s.cg := begin rcases hs with ⟨t, h1, h2⟩, rw cg_def, refine ⟨f ⁻¹' t, h1.preimage f.injective, _⟩, have hf : function.injective f.to_hom := f.injective, refine map_injective_of_injective hf _, rw [← h2, map_closure, embedding.coe_to_hom, image_preimage_eq_of_subset], intros x hx, have h' := subset_closure hx, rw h2 at h', exact hom.map_le_range h' end theorem cg_iff_countable [L.countable_functions] {s : L.substructure M} : s.cg ↔ nonempty (encodable s) := begin refine ⟨_, λ h, ⟨s, h, s.closure_eq⟩⟩, rintro ⟨s, h, rfl⟩, exact h.substructure_closure L end end substructure open substructure namespace Structure variables (L) (M) /-- A structure is finitely generated if it is the closure of a finite subset. -/ class fg : Prop := (out : (⊤ : L.substructure M).fg) /-- A structure is countably generated if it is the closure of a countable subset. -/ class cg : Prop := (out : (⊤ : L.substructure M).cg) variables {L M} lemma fg_def : fg L M ↔ (⊤ : L.substructure M).fg := ⟨λ h, h.1, λ h, ⟨h⟩⟩ /-- An equivalent expression of `Structure.fg` in terms of `set.finite` instead of `finset`. -/ lemma fg_iff : fg L M ↔ ∃ S : set M, S.finite ∧ closure L S = (⊤ : L.substructure M) := by rw [fg_def, substructure.fg_def] lemma fg.range {N : Type*} [L.Structure N] (h : fg L M) (f : M →[L] N) : f.range.fg := begin rw [hom.range_eq_map], exact (fg_def.1 h).map f, end lemma fg.map_of_surjective {N : Type*} [L.Structure N] (h : fg L M) (f : M →[L] N) (hs : function.surjective f) : fg L N := begin rw ← hom.range_eq_top at hs, rw [fg_def, ← hs], exact h.range f, end lemma cg_def : cg L M ↔ (⊤ : L.substructure M).cg := ⟨λ h, h.1, λ h, ⟨h⟩⟩ /-- An equivalent expression of `Structure.cg`. -/ lemma cg_iff : cg L M ↔ ∃ S : set M, S.countable ∧ closure L S = (⊤ : L.substructure M) := by rw [cg_def, substructure.cg_def] lemma cg.range {N : Type*} [L.Structure N] (h : cg L M) (f : M →[L] N) : f.range.cg := begin rw [hom.range_eq_map], exact (cg_def.1 h).map f, end lemma cg.map_of_surjective {N : Type*} [L.Structure N] (h : cg L M) (f : M →[L] N) (hs : function.surjective f) : cg L N := begin rw ← hom.range_eq_top at hs, rw [cg_def, ← hs], exact h.range f, end lemma cg_iff_countable [L.countable_functions] : cg L M ↔ nonempty (encodable M) := by rw [cg_def, cg_iff_countable, cardinal.encodable_iff, cardinal.encodable_iff, top_equiv.to_equiv.cardinal_eq] lemma fg.cg (h : fg L M) : cg L M := cg_def.2 (fg_def.1 h).cg @[priority 100] instance cg_of_fg [h : fg L M] : cg L M := h.cg end Structure lemma equiv.fg_iff {N : Type*} [L.Structure N] (f : M ≃[L] N) : Structure.fg L M ↔ Structure.fg L N := ⟨λ h, h.map_of_surjective f.to_hom f.to_equiv.surjective, λ h, h.map_of_surjective f.symm.to_hom f.to_equiv.symm.surjective⟩ lemma substructure.fg_iff_Structure_fg (S : L.substructure M) : S.fg ↔ Structure.fg L S := begin rw Structure.fg_def, refine ⟨λ h, fg.of_map_embedding S.subtype _, λ h, _⟩, { rw [← hom.range_eq_map, range_subtype], exact h }, { have h := h.map S.subtype.to_hom, rw [← hom.range_eq_map, range_subtype] at h, exact h } end lemma equiv.cg_iff {N : Type*} [L.Structure N] (f : M ≃[L] N) : Structure.cg L M ↔ Structure.cg L N := ⟨λ h, h.map_of_surjective f.to_hom f.to_equiv.surjective, λ h, h.map_of_surjective f.symm.to_hom f.to_equiv.symm.surjective⟩ lemma substructure.cg_iff_Structure_cg (S : L.substructure M) : S.cg ↔ Structure.cg L S := begin rw Structure.cg_def, refine ⟨λ h, cg.of_map_embedding S.subtype _, λ h, _⟩, { rw [← hom.range_eq_map, range_subtype], exact h }, { have h := h.map S.subtype.to_hom, rw [← hom.range_eq_map, range_subtype] at h, exact h } end end language end first_order