Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
10.9 kB
/-
Copyright (c) 2020 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import data.prod.basic
import data.subtype
import logic.function.basic
import logic.unique
/-!
# Nontrivial types
A type is *nontrivial* if it contains at least two elements. This is useful in particular for rings
(where it is equivalent to the fact that zero is different from one) and for vector spaces
(where it is equivalent to the fact that the dimension is positive).
We introduce a typeclass `nontrivial` formalizing this property.
-/
variables {α : Type*} {β : Type*}
open_locale classical
/-- Predicate typeclass for expressing that a type is not reduced to a single element. In rings,
this is equivalent to `01`. In vector spaces, this is equivalent to positive dimension. -/
class nontrivial (α : Type*) : Prop :=
(exists_pair_ne : ∃ (x y : α), x ≠ y)
lemma nontrivial_iff : nontrivial α ↔ ∃ (x y : α), x ≠ y :=
⟨λ h, h.exists_pair_ne, λ h, ⟨h⟩⟩
lemma exists_pair_ne (α : Type*) [nontrivial α] : ∃ (x y : α), x ≠ y :=
nontrivial.exists_pair_ne
-- See Note [decidable namespace]
protected lemma decidable.exists_ne [nontrivial α] [decidable_eq α] (x : α) : ∃ y, y ≠ x :=
begin
rcases exists_pair_ne α with ⟨y, y', h⟩,
by_cases hx : x = y,
{ rw ← hx at h,
exact ⟨y', h.symm⟩ },
{ exact ⟨y, ne.symm hx⟩ }
end
lemma exists_ne [nontrivial α] (x : α) : ∃ y, y ≠ x :=
by classical; exact decidable.exists_ne x
-- `x` and `y` are explicit here, as they are often needed to guide typechecking of `h`.
lemma nontrivial_of_ne (x y : α) (h : x ≠ y) : nontrivial α :=
⟨⟨x, y, h⟩⟩
-- `x` and `y` are explicit here, as they are often needed to guide typechecking of `h`.
lemma nontrivial_of_lt [preorder α] (x y : α) (h : x < y) : nontrivial α :=
⟨⟨x, y, ne_of_lt h⟩⟩
lemma exists_pair_lt (α : Type*) [nontrivial α] [linear_order α] : ∃ (x y : α), x < y :=
begin
rcases exists_pair_ne α with ⟨x, y, hxy⟩,
cases lt_or_gt_of_ne hxy;
exact ⟨_, _, h⟩
end
lemma nontrivial_iff_lt [linear_order α] : nontrivial α ↔ ∃ (x y : α), x < y :=
⟨λ h, @exists_pair_lt α h _, λ ⟨x, y, h⟩, nontrivial_of_lt x y h⟩
lemma nontrivial_iff_exists_ne (x : α) : nontrivial α ↔ ∃ y, y ≠ x :=
⟨λ h, @exists_ne α h x, λ ⟨y, hy⟩, nontrivial_of_ne _ _ hy⟩
lemma subtype.nontrivial_iff_exists_ne (p : α → Prop) (x : subtype p) :
nontrivial (subtype p) ↔ ∃ (y : α) (hy : p y), y ≠ x :=
by simp only [nontrivial_iff_exists_ne x, subtype.exists, ne.def, subtype.ext_iff, subtype.coe_mk]
instance : nontrivial Prop := ⟨⟨true, false, true_ne_false⟩⟩
/--
See Note [lower instance priority]
Note that since this and `nonempty_of_inhabited` are the most "obvious" way to find a nonempty
instance if no direct instance can be found, we give this a higher priority than the usual `100`.
-/
@[priority 500]
instance nontrivial.to_nonempty [nontrivial α] : nonempty α :=
let ⟨x, _⟩ := exists_pair_ne α in ⟨x⟩
attribute [instance, priority 500] nonempty_of_inhabited
/-- An inhabited type is either nontrivial, or has a unique element. -/
noncomputable def nontrivial_psum_unique (α : Type*) [inhabited α] :
psum (nontrivial α) (unique α) :=
if h : nontrivial α then psum.inl h else psum.inr
{ default := default,
uniq := λ (x : α),
begin
change x = default,
contrapose! h,
use [x, default]
end }
lemma subsingleton_iff : subsingleton α ↔ ∀ (x y : α), x = y :=
⟨by { introsI h, exact subsingleton.elim }, λ h, ⟨h⟩⟩
lemma not_nontrivial_iff_subsingleton : ¬(nontrivial α) ↔ subsingleton α :=
by { rw [nontrivial_iff, subsingleton_iff], push_neg, refl }
lemma not_nontrivial (α) [subsingleton α] : ¬nontrivial α :=
λ ⟨⟨x, y, h⟩⟩, h $ subsingleton.elim x y
lemma not_subsingleton (α) [h : nontrivial α] : ¬subsingleton α :=
let ⟨⟨x, y, hxy⟩⟩ := h in λ ⟨h'⟩, hxy $ h' x y
/-- A type is either a subsingleton or nontrivial. -/
lemma subsingleton_or_nontrivial (α : Type*) : subsingleton α ∨ nontrivial α :=
by { rw [← not_nontrivial_iff_subsingleton, or_comm], exact classical.em _ }
lemma false_of_nontrivial_of_subsingleton (α : Type*) [nontrivial α] [subsingleton α] : false :=
let ⟨x, y, h⟩ := exists_pair_ne α in h $ subsingleton.elim x y
instance option.nontrivial [nonempty α] : nontrivial (option α) :=
by { inhabit α, use [none, some default] }
/-- Pushforward a `nontrivial` instance along an injective function. -/
protected lemma function.injective.nontrivial [nontrivial α]
{f : α → β} (hf : function.injective f) : nontrivial β :=
let ⟨x, y, h⟩ := exists_pair_ne α in ⟨⟨f x, f y, hf.ne h⟩⟩
/-- Pullback a `nontrivial` instance along a surjective function. -/
protected lemma function.surjective.nontrivial [nontrivial β]
{f : α → β} (hf : function.surjective f) : nontrivial α :=
begin
rcases exists_pair_ne β with ⟨x, y, h⟩,
rcases hf x with ⟨x', hx'⟩,
rcases hf y with ⟨y', hy'⟩,
have : x' ≠ y', by { contrapose! h, rw [← hx', ← hy', h] },
exact ⟨⟨x', y', this⟩⟩
end
/-- An injective function from a nontrivial type has an argument at
which it does not take a given value. -/
protected lemma function.injective.exists_ne [nontrivial α] {f : α → β}
(hf : function.injective f) (y : β) : ∃ x, f x ≠ y :=
begin
rcases exists_pair_ne α with ⟨x₁, x₂, hx⟩,
by_cases h : f x₂ = y,
{ exact ⟨x₁, (hf.ne_iff' h).2 hx⟩ },
{ exact ⟨x₂, h⟩ }
end
instance nontrivial_prod_right [nonempty α] [nontrivial β] : nontrivial (α × β) :=
prod.snd_surjective.nontrivial
instance nontrivial_prod_left [nontrivial α] [nonempty β] : nontrivial (α × β) :=
prod.fst_surjective.nontrivial
namespace pi
variables {I : Type*} {f : IType*}
/-- A pi type is nontrivial if it's nonempty everywhere and nontrivial somewhere. -/
lemma nontrivial_at (i' : I) [inst : Π i, nonempty (f i)] [nontrivial (f i')] :
nontrivial (Π i : I, f i) :=
by classical; exact
(function.update_injective (λ i, classical.choice (inst i)) i').nontrivial
/--
As a convenience, provide an instance automatically if `(f default)` is nontrivial.
If a different index has the non-trivial type, then use `haveI := nontrivial_at that_index`.
-/
instance nontrivial [inhabited I] [inst : Π i, nonempty (f i)] [nontrivial (f default)] :
nontrivial (Π i : I, f i) := nontrivial_at default
end pi
instance function.nontrivial [h : nonempty α] [nontrivial β] : nontrivial (α → β) :=
h.elim $ λ a, pi.nontrivial_at a
mk_simp_attribute nontriviality "Simp lemmas for `nontriviality` tactic"
protected lemma subsingleton.le [preorder α] [subsingleton α] (x y : α) : x ≤ y :=
le_of_eq (subsingleton.elim x y)
attribute [nontriviality] eq_iff_true_of_subsingleton subsingleton.le
namespace tactic
/--
Tries to generate a `nontrivial α` instance by performing case analysis on
`subsingleton_or_nontrivial α`,
attempting to discharge the subsingleton branch using lemmas with `@[nontriviality]` attribute,
including `subsingleton.le` and `eq_iff_true_of_subsingleton`.
-/
meta def nontriviality_by_elim (α : expr) (lems : interactive.parse simp_arg_list) : tactic unit :=
do
alternative ← to_expr ``(subsingleton_or_nontrivial %%α),
n ← get_unused_name "_inst",
tactic.cases alternative [n, n],
(solve1 $ do
reset_instance_cache,
apply_instance <|>
interactive.simp none none ff lems [`nontriviality] (interactive.loc.ns [none])) <|>
fail format!"Could not prove goal assuming `subsingleton {α}`",
reset_instance_cache
/--
Tries to generate a `nontrivial α` instance using `nontrivial_of_ne` or `nontrivial_of_lt`
and local hypotheses.
-/
meta def nontriviality_by_assumption (α : expr) : tactic unit :=
do
n ← get_unused_name "_inst",
to_expr ``(nontrivial %%α) >>= assert n,
apply_instance <|> `[solve_by_elim [nontrivial_of_ne, nontrivial_of_lt]],
reset_instance_cache
end tactic
namespace tactic.interactive
open tactic
setup_tactic_parser
/--
Attempts to generate a `nontrivial α` hypothesis.
The tactic first looks for an instance using `apply_instance`.
If the goal is an (in)equality, the type `α` is inferred from the goal.
Otherwise, the type needs to be specified in the tactic invocation, as `nontriviality α`.
The `nontriviality` tactic will first look for strict inequalities amongst the hypotheses,
and use these to derive the `nontrivial` instance directly.
Otherwise, it will perform a case split on `subsingleton α ∨ nontrivial α`, and attempt to discharge
the `subsingleton` goal using `simp [lemmas] with nontriviality`, where `[lemmas]` is a list of
additional `simp` lemmas that can be passed to `nontriviality` using the syntax
`nontriviality α using [lemmas]`.
```
example {R : Type} [ordered_ring R] {a : R} (h : 0 < a) : 0 < a :=
begin
nontriviality, -- There is now a `nontrivial R` hypothesis available.
assumption,
end
```
```
example {R : Type} [comm_ring R] {r s : R} : r * s = s * r :=
begin
nontriviality, -- There is now a `nontrivial R` hypothesis available.
apply mul_comm,
end
```
```
example {R : Type} [ordered_ring R] {a : R} (h : 0 < a) : (2 : ℕ) ∣ 4 :=
begin
nontriviality R, -- there is now a `nontrivial R` hypothesis available.
dec_trivial
end
```
```
def myeq {α : Type} (a b : α) : Prop := a = b
example {α : Type} (a b : α) (h : a = b) : myeq a b :=
begin
success_if_fail { nontriviality α }, -- Fails
nontriviality α using [myeq], -- There is now a `nontrivial α` hypothesis available
assumption
end
```
-/
meta def nontriviality (t : parse texpr?)
(lems : parse (tk "using" *> simp_arg_list <|> pure [])) :
tactic unit :=
do
α ← match t with
| some α := to_expr α
| none :=
(do t ← mk_mvar, e ← to_expr ``(@eq %%t _ _), target >>= unify e, return t) <|>
(do t ← mk_mvar, e ← to_expr ``(@has_le.le %%t _ _ _), target >>= unify e, return t) <|>
(do t ← mk_mvar, e ← to_expr ``(@ne %%t _ _), target >>= unify e, return t) <|>
(do t ← mk_mvar, e ← to_expr ``(@has_lt.lt %%t _ _ _), target >>= unify e, return t) <|>
fail "The goal is not an (in)equality, so you'll need to specify the desired `nontrivial α`
instance by invoking `nontriviality α`."
end,
nontriviality_by_assumption α <|> nontriviality_by_elim α lems
add_tactic_doc
{ name := "nontriviality",
category := doc_category.tactic,
decl_names := [`tactic.interactive.nontriviality],
tags := ["logic", "type class"] }
end tactic.interactive
namespace bool
instance : nontrivial bool := ⟨⟨tt,ff, tt_eq_ff_eq_false⟩⟩
end bool