Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
4.94 kB
/-
Copyright (c) 2020 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import logic.function.basic
/-!
# Semiconjugate and commuting maps
We define the following predicates:
* `function.semiconj`: `f : α → β` semiconjugates `ga : α → α` to `gb : β → β` if `f ∘ ga = gb ∘ f`;
* `function.semiconj₂: `f : α → β` semiconjugates a binary operation `ga : α → α → α`
to `gb : β → β → β` if `f (ga x y) = gb (f x) (f y)`;
* `f : α → α` commutes with `g : α → α` if `f ∘ g = g ∘ f`, or equivalently `semiconj f g g`.
-/
namespace function
variables {α : Type*} {β : Type*} {γ : Type*}
/-- We say that `f : α → β` semiconjugates `ga : α → α` to `gb : β → β` if `f ∘ ga = gb ∘ f`.
We use `∀ x, f (ga x) = gb (f x)` as the definition, so given `h : function.semiconj f ga gb` and
`a : α`, we have `h a : f (ga a) = gb (f a)` and `h.comp_eq : f ∘ ga = gb ∘ f`. -/
def semiconj (f : α → β) (ga : α → α) (gb : β → β) : Prop := ∀ x, f (ga x) = gb (f x)
namespace semiconj
variables {f fab : α → β} {fbc : β → γ} {ga ga' : α → α} {gb gb' : β → β} {gc gc' : γ → γ}
protected lemma comp_eq (h : semiconj f ga gb) : f ∘ ga = gb ∘ f := funext h
protected lemma eq (h : semiconj f ga gb) (x : α) : f (ga x) = gb (f x) := h x
lemma comp_right (h : semiconj f ga gb) (h' : semiconj f ga' gb') :
semiconj f (ga ∘ ga') (gb ∘ gb') :=
λ x, by rw [comp_app, h.eq, h'.eq]
lemma comp_left (hab : semiconj fab ga gb) (hbc : semiconj fbc gb gc) :
semiconj (fbc ∘ fab) ga gc :=
λ x, by simp only [comp_app, hab.eq, hbc.eq]
lemma id_right : semiconj f id id := λ _, rfl
lemma id_left : semiconj id ga ga := λ _, rfl
lemma inverses_right (h : semiconj f ga gb) (ha : right_inverse ga' ga)
(hb : left_inverse gb' gb) :
semiconj f ga' gb' :=
λ x, by rw [← hb (f (ga' x)), ← h.eq, ha x]
lemma option_map {f : α → β} {ga : α → α} {gb : β → β} (h : semiconj f ga gb) :
semiconj (option.map f) (option.map ga) (option.map gb)
| none := rfl
| (some a) := congr_arg some $ h _
end semiconj
/-- Two maps `f g : α → α` commute if `f (g x) = g (f x)` for all `x : α`.
Given `h : function.commute f g` and `a : α`, we have `h a : f (g a) = g (f a)` and
`h.comp_eq : f ∘ g = g ∘ f`. -/
def commute (f g : α → α) : Prop := semiconj f g g
lemma semiconj.commute {f g : α → α} (h : semiconj f g g) : commute f g := h
namespace commute
variables {f f' g g' : α → α}
@[refl] lemma refl (f : α → α) : commute f f := λ _, eq.refl _
@[symm] lemma symm (h : commute f g) : commute g f := λ x, (h x).symm
lemma comp_right (h : commute f g) (h' : commute f g') : commute f (g ∘ g') :=
h.comp_right h'
lemma comp_left (h : commute f g) (h' : commute f' g) : commute (f ∘ f') g :=
(h.symm.comp_right h'.symm).symm
lemma id_right : commute f id := semiconj.id_right
lemma id_left : commute id f := semiconj.id_left
lemma option_map {f g : α → α} : commute f g → commute (option.map f) (option.map g) :=
semiconj.option_map
end commute
/-- A map `f` semiconjugates a binary operation `ga` to a binary operation `gb` if
for all `x`, `y` we have `f (ga x y) = gb (f x) (f y)`. E.g., a `monoid_hom`
semiconjugates `(*)` to `(*)`. -/
def semiconj₂ (f : α → β) (ga : α → α → α) (gb : β → β → β) : Prop :=
∀ x y, f (ga x y) = gb (f x) (f y)
namespace semiconj₂
variables {f : α → β} {ga : α → α → α} {gb : β → β → β}
protected lemma eq (h : semiconj₂ f ga gb) (x y : α) : f (ga x y) = gb (f x) (f y) := h x y
protected lemma comp_eq (h : semiconj₂ f ga gb) :
bicompr f ga = bicompl gb f f :=
funext $ λ x, funext $ h x
lemma id_left (op : α → α → α) : semiconj₂ id op op := λ _ _, rfl
lemma comp {f' : β → γ} {gc : γ → γ → γ} (hf' : semiconj₂ f' gb gc) (hf : semiconj₂ f ga gb) :
semiconj₂ (f' ∘ f) ga gc :=
λ x y, by simp only [hf'.eq, hf.eq, comp_app]
lemma is_associative_right [is_associative α ga] (h : semiconj₂ f ga gb) (h_surj : surjective f) :
is_associative β gb :=
⟨h_surj.forall₃.2 $ λ x₁ x₂ x₃, by simp only [← h.eq, @is_associative.assoc _ ga]⟩
lemma is_associative_left [is_associative β gb] (h : semiconj₂ f ga gb) (h_inj : injective f) :
is_associative α ga :=
⟨λ x₁ x₂ x₃, h_inj $ by simp only [h.eq, @is_associative.assoc _ gb]⟩
lemma is_idempotent_right [is_idempotent α ga] (h : semiconj₂ f ga gb) (h_surj : surjective f) :
is_idempotent β gb :=
⟨h_surj.forall.2 $ λ x, by simp only [← h.eq, @is_idempotent.idempotent _ ga]⟩
lemma is_idempotent_left [is_idempotent β gb] (h : semiconj₂ f ga gb) (h_inj : injective f) :
is_idempotent α ga :=
⟨λ x, h_inj $ by rw [h.eq, @is_idempotent.idempotent _ gb]⟩
end semiconj₂
end function