Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2016 Johannes Hölzl. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johannes Hölzl, Mario Carneiro | |
-/ | |
import data.option.defs | |
import logic.nonempty | |
import tactic.cache | |
/-! | |
# Miscellaneous function constructions and lemmas | |
-/ | |
universes u v w | |
namespace function | |
section | |
variables {α β γ : Sort*} {f : α → β} | |
/-- Evaluate a function at an argument. Useful if you want to talk about the partially applied | |
`function.eval x : (Π x, β x) → β x`. -/ | |
@[reducible] def eval {β : α → Sort*} (x : α) (f : Π x, β x) : β x := f x | |
@[simp] lemma eval_apply {β : α → Sort*} (x : α) (f : Π x, β x) : eval x f = f x := rfl | |
lemma comp_apply {α : Sort u} {β : Sort v} {φ : Sort w} (f : β → φ) (g : α → β) (a : α) : | |
(f ∘ g) a = f (g a) := rfl | |
lemma const_def {y : β} : (λ x : α, y) = const α y := rfl | |
@[simp] lemma const_apply {y : β} {x : α} : const α y x = y := rfl | |
@[simp] lemma const_comp {f : α → β} {c : γ} : const β c ∘ f = const α c := rfl | |
@[simp] lemma comp_const {f : β → γ} {b : β} : f ∘ const α b = const α (f b) := rfl | |
lemma const_injective [nonempty α] : injective (const α : β → α → β) := | |
λ y₁ y₂ h, let ⟨x⟩ := ‹nonempty α› in congr_fun h x | |
@[simp] lemma const_inj [nonempty α] {y₁ y₂ : β} : const α y₁ = const α y₂ ↔ y₁ = y₂ := | |
⟨λ h, const_injective h, λ h, h ▸ rfl⟩ | |
lemma id_def : @id α = λ x, x := rfl | |
lemma hfunext {α α': Sort u} {β : α → Sort v} {β' : α' → Sort v} {f : Πa, β a} {f' : Πa, β' a} | |
(hα : α = α') (h : ∀a a', a == a' → f a == f' a') : f == f' := | |
begin | |
subst hα, | |
have : ∀a, f a == f' a, | |
{ intro a, exact h a a (heq.refl a) }, | |
have : β = β', | |
{ funext a, exact type_eq_of_heq (this a) }, | |
subst this, | |
apply heq_of_eq, | |
funext a, | |
exact eq_of_heq (this a) | |
end | |
lemma funext_iff {β : α → Sort*} {f₁ f₂ : Π (x : α), β x} : f₁ = f₂ ↔ (∀ a, f₁ a = f₂ a) := | |
iff.intro (assume h a, h ▸ rfl) funext | |
lemma ne_iff {β : α → Sort*} {f₁ f₂ : Π a, β a} : f₁ ≠ f₂ ↔ ∃ a, f₁ a ≠ f₂ a := | |
funext_iff.not.trans not_forall | |
protected lemma bijective.injective {f : α → β} (hf : bijective f) : injective f := hf.1 | |
protected lemma bijective.surjective {f : α → β} (hf : bijective f) : surjective f := hf.2 | |
theorem injective.eq_iff (I : injective f) {a b : α} : | |
f a = f b ↔ a = b := | |
⟨@I _ _, congr_arg f⟩ | |
theorem injective.eq_iff' (I : injective f) {a b : α} {c : β} (h : f b = c) : | |
f a = c ↔ a = b := | |
h ▸ I.eq_iff | |
lemma injective.ne (hf : injective f) {a₁ a₂ : α} : a₁ ≠ a₂ → f a₁ ≠ f a₂ := | |
mt (assume h, hf h) | |
lemma injective.ne_iff (hf : injective f) {x y : α} : f x ≠ f y ↔ x ≠ y := | |
⟨mt $ congr_arg f, hf.ne⟩ | |
lemma injective.ne_iff' (hf : injective f) {x y : α} {z : β} (h : f y = z) : | |
f x ≠ z ↔ x ≠ y := | |
h ▸ hf.ne_iff | |
/-- If the co-domain `β` of an injective function `f : α → β` has decidable equality, then | |
the domain `α` also has decidable equality. -/ | |
protected def injective.decidable_eq [decidable_eq β] (I : injective f) : decidable_eq α := | |
λ a b, decidable_of_iff _ I.eq_iff | |
lemma injective.of_comp {g : γ → α} (I : injective (f ∘ g)) : injective g := | |
λ x y h, I $ show f (g x) = f (g y), from congr_arg f h | |
lemma injective.of_comp_iff {f : α → β} (hf : injective f) (g : γ → α) : | |
injective (f ∘ g) ↔ injective g := | |
⟨injective.of_comp, hf.comp⟩ | |
lemma injective.of_comp_iff' (f : α → β) {g : γ → α} (hg : bijective g) : | |
injective (f ∘ g) ↔ injective f := | |
⟨ λ h x y, let ⟨x', hx⟩ := hg.surjective x, ⟨y', hy⟩ := hg.surjective y in | |
hx ▸ hy ▸ λ hf, h hf ▸ rfl, | |
λ h, h.comp hg.injective⟩ | |
/-- Composition by an injective function on the left is itself injective. -/ | |
lemma injective.comp_left {g : β → γ} (hg : function.injective g) : | |
function.injective ((∘) g : (α → β) → (α → γ)) := | |
λ f₁ f₂ hgf, funext $ λ i, hg $ (congr_fun hgf i : _) | |
lemma injective_of_subsingleton [subsingleton α] (f : α → β) : | |
injective f := | |
λ a b ab, subsingleton.elim _ _ | |
lemma injective.dite (p : α → Prop) [decidable_pred p] | |
{f : {a : α // p a} → β} {f' : {a : α // ¬ p a} → β} | |
(hf : injective f) (hf' : injective f') | |
(im_disj : ∀ {x x' : α} {hx : p x} {hx' : ¬ p x'}, f ⟨x, hx⟩ ≠ f' ⟨x', hx'⟩) : | |
function.injective (λ x, if h : p x then f ⟨x, h⟩ else f' ⟨x, h⟩) := | |
λ x₁ x₂ h, begin | |
dsimp only at h, | |
by_cases h₁ : p x₁; by_cases h₂ : p x₂, | |
{ rw [dif_pos h₁, dif_pos h₂] at h, injection (hf h), }, | |
{ rw [dif_pos h₁, dif_neg h₂] at h, exact (im_disj h).elim, }, | |
{ rw [dif_neg h₁, dif_pos h₂] at h, exact (im_disj h.symm).elim, }, | |
{ rw [dif_neg h₁, dif_neg h₂] at h, injection (hf' h), }, | |
end | |
lemma surjective.of_comp {g : γ → α} (S : surjective (f ∘ g)) : surjective f := | |
λ y, let ⟨x, h⟩ := S y in ⟨g x, h⟩ | |
lemma surjective.of_comp_iff (f : α → β) {g : γ → α} (hg : surjective g) : | |
surjective (f ∘ g) ↔ surjective f := | |
⟨surjective.of_comp, λ h, h.comp hg⟩ | |
lemma surjective.of_comp_iff' (hf : bijective f) (g : γ → α) : | |
surjective (f ∘ g) ↔ surjective g := | |
⟨λ h x, let ⟨x', hx'⟩ := h (f x) in ⟨x', hf.injective hx'⟩, hf.surjective.comp⟩ | |
instance decidable_eq_pfun (p : Prop) [decidable p] (α : p → Type*) | |
[Π hp, decidable_eq (α hp)] : decidable_eq (Π hp, α hp) | |
| f g := decidable_of_iff (∀ hp, f hp = g hp) funext_iff.symm | |
protected theorem surjective.forall (hf : surjective f) {p : β → Prop} : | |
(∀ y, p y) ↔ ∀ x, p (f x) := | |
⟨λ h x, h (f x), λ h y, let ⟨x, hx⟩ := hf y in hx ▸ h x⟩ | |
protected theorem surjective.forall₂ (hf : surjective f) {p : β → β → Prop} : | |
(∀ y₁ y₂, p y₁ y₂) ↔ ∀ x₁ x₂, p (f x₁) (f x₂) := | |
hf.forall.trans $ forall_congr $ λ x, hf.forall | |
protected theorem surjective.forall₃ (hf : surjective f) {p : β → β → β → Prop} : | |
(∀ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∀ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := | |
hf.forall.trans $ forall_congr $ λ x, hf.forall₂ | |
protected theorem surjective.exists (hf : surjective f) {p : β → Prop} : | |
(∃ y, p y) ↔ ∃ x, p (f x) := | |
⟨λ ⟨y, hy⟩, let ⟨x, hx⟩ := hf y in ⟨x, hx.symm ▸ hy⟩, λ ⟨x, hx⟩, ⟨f x, hx⟩⟩ | |
protected theorem surjective.exists₂ (hf : surjective f) {p : β → β → Prop} : | |
(∃ y₁ y₂, p y₁ y₂) ↔ ∃ x₁ x₂, p (f x₁) (f x₂) := | |
hf.exists.trans $ exists_congr $ λ x, hf.exists | |
protected theorem surjective.exists₃ (hf : surjective f) {p : β → β → β → Prop} : | |
(∃ y₁ y₂ y₃, p y₁ y₂ y₃) ↔ ∃ x₁ x₂ x₃, p (f x₁) (f x₂) (f x₃) := | |
hf.exists.trans $ exists_congr $ λ x, hf.exists₂ | |
lemma surjective.injective_comp_right (hf : surjective f) : | |
injective (λ g : β → γ, g ∘ f) := | |
λ g₁ g₂ h, funext $ hf.forall.2 $ congr_fun h | |
protected lemma surjective.right_cancellable (hf : surjective f) {g₁ g₂ : β → γ} : | |
g₁ ∘ f = g₂ ∘ f ↔ g₁ = g₂ := | |
hf.injective_comp_right.eq_iff | |
lemma surjective_of_right_cancellable_Prop (h : ∀ g₁ g₂ : β → Prop, g₁ ∘ f = g₂ ∘ f → g₁ = g₂) : | |
surjective f := | |
begin | |
specialize h (λ _, true) (λ y, ∃ x, f x = y) (funext $ λ x, _), | |
{ simp only [(∘), exists_apply_eq_apply] }, | |
{ intro y, | |
have : true = ∃ x, f x = y, from congr_fun h y, | |
rw ← this, exact trivial } | |
end | |
lemma bijective_iff_exists_unique (f : α → β) : bijective f ↔ | |
∀ b : β, ∃! (a : α), f a = b := | |
⟨ λ hf b, let ⟨a, ha⟩ := hf.surjective b in ⟨a, ha, λ a' ha', hf.injective (ha'.trans ha.symm)⟩, | |
λ he, ⟨ | |
λ a a' h, unique_of_exists_unique (he (f a')) h rfl, | |
λ b, exists_of_exists_unique (he b) ⟩⟩ | |
/-- Shorthand for using projection notation with `function.bijective_iff_exists_unique`. -/ | |
protected lemma bijective.exists_unique {f : α → β} (hf : bijective f) (b : β) : | |
∃! (a : α), f a = b := | |
(bijective_iff_exists_unique f).mp hf b | |
lemma bijective.exists_unique_iff {f : α → β} (hf : bijective f) {p : β → Prop} : | |
(∃! y, p y) ↔ ∃! x, p (f x) := | |
⟨λ ⟨y, hpy, hy⟩, let ⟨x, hx⟩ := hf.surjective y in ⟨x, by rwa hx, | |
λ z (hz : p (f z)), hf.injective $ hx.symm ▸ hy _ hz⟩, | |
λ ⟨x, hpx, hx⟩, ⟨f x, hpx, λ y hy, | |
let ⟨z, hz⟩ := hf.surjective y in hz ▸ congr_arg f $ hx _ $ by rwa hz⟩⟩ | |
lemma bijective.of_comp_iff (f : α → β) {g : γ → α} (hg : bijective g) : | |
bijective (f ∘ g) ↔ bijective f := | |
and_congr (injective.of_comp_iff' _ hg) (surjective.of_comp_iff _ hg.surjective) | |
lemma bijective.of_comp_iff' {f : α → β} (hf : bijective f) (g : γ → α) : | |
function.bijective (f ∘ g) ↔ function.bijective g := | |
and_congr (injective.of_comp_iff hf.injective _) (surjective.of_comp_iff' hf _) | |
/-- **Cantor's diagonal argument** implies that there are no surjective functions from `α` | |
to `set α`. -/ | |
theorem cantor_surjective {α} (f : α → set α) : ¬ function.surjective f | h := | |
let ⟨D, e⟩ := h {a | ¬ a ∈ f a} in | |
(iff_not_self (D ∈ f D)).1 $ iff_of_eq (congr_arg ((∈) D) e) | |
/-- **Cantor's diagonal argument** implies that there are no injective functions from `set α` | |
to `α`. -/ | |
theorem cantor_injective {α : Type*} (f : set α → α) : ¬ function.injective f | i := | |
cantor_surjective (λ a, {b | ∀ U, a = f U → b ∈ U}) $ | |
right_inverse.surjective (λ U, funext $ λ a, propext ⟨λ h, h U rfl, λ h' U' e, i e ▸ h'⟩) | |
/-- There is no surjection from `α : Type u` into `Type u`. This theorem | |
demonstrates why `Type : Type` would be inconsistent in Lean. -/ | |
theorem not_surjective_Type {α : Type u} (f : α → Type (max u v)) : | |
¬ surjective f := | |
begin | |
intro hf, | |
let T : Type (max u v) := sigma f, | |
cases hf (set T) with U hU, | |
let g : set T → T := λ s, ⟨U, cast hU.symm s⟩, | |
have hg : injective g, | |
{ intros s t h, | |
suffices : cast hU (g s).2 = cast hU (g t).2, | |
{ simp only [cast_cast, cast_eq] at this, assumption }, | |
{ congr, assumption } }, | |
exact cantor_injective g hg | |
end | |
/-- `g` is a partial inverse to `f` (an injective but not necessarily | |
surjective function) if `g y = some x` implies `f x = y`, and `g y = none` | |
implies that `y` is not in the range of `f`. -/ | |
def is_partial_inv {α β} (f : α → β) (g : β → option α) : Prop := | |
∀ x y, g y = some x ↔ f x = y | |
theorem is_partial_inv_left {α β} {f : α → β} {g} (H : is_partial_inv f g) (x) : g (f x) = some x := | |
(H _ _).2 rfl | |
theorem injective_of_partial_inv {α β} {f : α → β} {g} (H : is_partial_inv f g) : injective f := | |
λ a b h, option.some.inj $ ((H _ _).2 h).symm.trans ((H _ _).2 rfl) | |
theorem injective_of_partial_inv_right {α β} {f : α → β} {g} (H : is_partial_inv f g) | |
(x y b) (h₁ : b ∈ g x) (h₂ : b ∈ g y) : x = y := | |
((H _ _).1 h₁).symm.trans ((H _ _).1 h₂) | |
theorem left_inverse.comp_eq_id {f : α → β} {g : β → α} (h : left_inverse f g) : f ∘ g = id := | |
funext h | |
theorem left_inverse_iff_comp {f : α → β} {g : β → α} : left_inverse f g ↔ f ∘ g = id := | |
⟨left_inverse.comp_eq_id, congr_fun⟩ | |
theorem right_inverse.comp_eq_id {f : α → β} {g : β → α} (h : right_inverse f g) : g ∘ f = id := | |
funext h | |
theorem right_inverse_iff_comp {f : α → β} {g : β → α} : right_inverse f g ↔ g ∘ f = id := | |
⟨right_inverse.comp_eq_id, congr_fun⟩ | |
theorem left_inverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} | |
(hf : left_inverse f g) (hh : left_inverse h i) : left_inverse (h ∘ f) (g ∘ i) := | |
assume a, show h (f (g (i a))) = a, by rw [hf (i a), hh a] | |
theorem right_inverse.comp {f : α → β} {g : β → α} {h : β → γ} {i : γ → β} | |
(hf : right_inverse f g) (hh : right_inverse h i) : right_inverse (h ∘ f) (g ∘ i) := | |
left_inverse.comp hh hf | |
theorem left_inverse.right_inverse {f : α → β} {g : β → α} (h : left_inverse g f) : | |
right_inverse f g := h | |
theorem right_inverse.left_inverse {f : α → β} {g : β → α} (h : right_inverse g f) : | |
left_inverse f g := h | |
theorem left_inverse.surjective {f : α → β} {g : β → α} (h : left_inverse f g) : | |
surjective f := | |
h.right_inverse.surjective | |
theorem right_inverse.injective {f : α → β} {g : β → α} (h : right_inverse f g) : | |
injective f := | |
h.left_inverse.injective | |
theorem left_inverse.right_inverse_of_injective {f : α → β} {g : β → α} (h : left_inverse f g) | |
(hf : injective f) : | |
right_inverse f g := | |
λ x, hf $ h (f x) | |
theorem left_inverse.right_inverse_of_surjective {f : α → β} {g : β → α} (h : left_inverse f g) | |
(hg : surjective g) : | |
right_inverse f g := | |
λ x, let ⟨y, hy⟩ := hg x in hy ▸ congr_arg g (h y) | |
lemma right_inverse.left_inverse_of_surjective {f : α → β} {g : β → α} : | |
right_inverse f g → surjective f → left_inverse f g := | |
left_inverse.right_inverse_of_surjective | |
lemma right_inverse.left_inverse_of_injective {f : α → β} {g : β → α} : | |
right_inverse f g → injective g → left_inverse f g := | |
left_inverse.right_inverse_of_injective | |
theorem left_inverse.eq_right_inverse {f : α → β} {g₁ g₂ : β → α} (h₁ : left_inverse g₁ f) | |
(h₂ : right_inverse g₂ f) : | |
g₁ = g₂ := | |
calc g₁ = g₁ ∘ f ∘ g₂ : by rw [h₂.comp_eq_id, comp.right_id] | |
... = g₂ : by rw [← comp.assoc, h₁.comp_eq_id, comp.left_id] | |
local attribute [instance, priority 10] classical.prop_decidable | |
/-- We can use choice to construct explicitly a partial inverse for | |
a given injective function `f`. -/ | |
noncomputable def partial_inv {α β} (f : α → β) (b : β) : option α := | |
if h : ∃ a, f a = b then some (classical.some h) else none | |
theorem partial_inv_of_injective {α β} {f : α → β} (I : injective f) : | |
is_partial_inv f (partial_inv f) | a b := | |
⟨λ h, if h' : ∃ a, f a = b then begin | |
rw [partial_inv, dif_pos h'] at h, | |
injection h with h, subst h, | |
apply classical.some_spec h' | |
end else by rw [partial_inv, dif_neg h'] at h; contradiction, | |
λ e, e ▸ have h : ∃ a', f a' = f a, from ⟨_, rfl⟩, | |
(dif_pos h).trans (congr_arg _ (I $ classical.some_spec h))⟩ | |
theorem partial_inv_left {α β} {f : α → β} (I : injective f) : ∀ x, partial_inv f (f x) = some x := | |
is_partial_inv_left (partial_inv_of_injective I) | |
end | |
section inv_fun | |
variables {α β : Sort*} [nonempty α] {f : α → β} {a : α} {b : β} | |
local attribute [instance, priority 10] classical.prop_decidable | |
/-- The inverse of a function (which is a left inverse if `f` is injective | |
and a right inverse if `f` is surjective). -/ | |
noncomputable def inv_fun (f : α → β) : β → α := | |
λ y, if h : ∃ x, f x = y then h.some else classical.arbitrary α | |
theorem inv_fun_eq (h : ∃ a, f a = b) : f (inv_fun f b) = b := | |
by simp only [inv_fun, dif_pos h, h.some_spec] | |
lemma inv_fun_neg (h : ¬ ∃ a, f a = b) : inv_fun f b = classical.choice ‹_› := | |
dif_neg h | |
theorem inv_fun_eq_of_injective_of_right_inverse {g : β → α} | |
(hf : injective f) (hg : right_inverse g f) : inv_fun f = g := | |
funext $ assume b, | |
hf begin rw [hg b], exact inv_fun_eq ⟨g b, hg b⟩ end | |
lemma right_inverse_inv_fun (hf : surjective f) : right_inverse (inv_fun f) f := | |
assume b, inv_fun_eq $ hf b | |
lemma left_inverse_inv_fun (hf : injective f) : left_inverse (inv_fun f) f := | |
λ b, hf $ inv_fun_eq ⟨b, rfl⟩ | |
lemma inv_fun_surjective (hf : injective f) : surjective (inv_fun f) := | |
(left_inverse_inv_fun hf).surjective | |
lemma inv_fun_comp (hf : injective f) : inv_fun f ∘ f = id := funext $ left_inverse_inv_fun hf | |
lemma injective.has_left_inverse (hf : injective f) : has_left_inverse f := | |
⟨inv_fun f, left_inverse_inv_fun hf⟩ | |
lemma injective_iff_has_left_inverse : injective f ↔ has_left_inverse f := | |
⟨injective.has_left_inverse, has_left_inverse.injective⟩ | |
end inv_fun | |
section surj_inv | |
variables {α : Sort u} {β : Sort v} {γ : Sort w} {f : α → β} | |
/-- The inverse of a surjective function. (Unlike `inv_fun`, this does not require | |
`α` to be inhabited.) -/ | |
noncomputable def surj_inv {f : α → β} (h : surjective f) (b : β) : α := classical.some (h b) | |
lemma surj_inv_eq (h : surjective f) (b) : f (surj_inv h b) = b := classical.some_spec (h b) | |
lemma right_inverse_surj_inv (hf : surjective f) : right_inverse (surj_inv hf) f := | |
surj_inv_eq hf | |
lemma left_inverse_surj_inv (hf : bijective f) : left_inverse (surj_inv hf.2) f := | |
right_inverse_of_injective_of_left_inverse hf.1 (right_inverse_surj_inv hf.2) | |
lemma surjective.has_right_inverse (hf : surjective f) : has_right_inverse f := | |
⟨_, right_inverse_surj_inv hf⟩ | |
lemma surjective_iff_has_right_inverse : surjective f ↔ has_right_inverse f := | |
⟨surjective.has_right_inverse, has_right_inverse.surjective⟩ | |
lemma bijective_iff_has_inverse : bijective f ↔ ∃ g, left_inverse g f ∧ right_inverse g f := | |
⟨λ hf, ⟨_, left_inverse_surj_inv hf, right_inverse_surj_inv hf.2⟩, | |
λ ⟨g, gl, gr⟩, ⟨gl.injective, gr.surjective⟩⟩ | |
lemma injective_surj_inv (h : surjective f) : injective (surj_inv h) := | |
(right_inverse_surj_inv h).injective | |
lemma surjective_to_subsingleton [na : nonempty α] [subsingleton β] (f : α → β) : | |
surjective f := | |
λ y, let ⟨a⟩ := na in ⟨a, subsingleton.elim _ _⟩ | |
/-- Composition by an surjective function on the left is itself surjective. -/ | |
lemma surjective.comp_left {g : β → γ} (hg : surjective g) : | |
surjective ((∘) g : (α → β) → (α → γ)) := | |
λ f, ⟨surj_inv hg ∘ f, funext $ λ x, right_inverse_surj_inv _ _⟩ | |
/-- Composition by an bijective function on the left is itself bijective. -/ | |
lemma bijective.comp_left {g : β → γ} (hg : bijective g) : | |
bijective ((∘) g : (α → β) → (α → γ)) := | |
⟨hg.injective.comp_left, hg.surjective.comp_left⟩ | |
end surj_inv | |
section update | |
variables {α : Sort u} {β : α → Sort v} {α' : Sort w} [decidable_eq α] [decidable_eq α'] | |
/-- Replacing the value of a function at a given point by a given value. -/ | |
def update (f : Πa, β a) (a' : α) (v : β a') (a : α) : β a := | |
if h : a = a' then eq.rec v h.symm else f a | |
/-- On non-dependent functions, `function.update` can be expressed as an `ite` -/ | |
lemma update_apply {β : Sort*} (f : α → β) (a' : α) (b : β) (a : α) : | |
update f a' b a = if a = a' then b else f a := | |
begin | |
dunfold update, | |
congr, | |
funext, | |
rw eq_rec_constant, | |
end | |
@[simp] lemma update_same (a : α) (v : β a) (f : Πa, β a) : update f a v a = v := | |
dif_pos rfl | |
lemma surjective_eval {α : Sort u} {β : α → Sort v} [h : Π a, nonempty (β a)] (a : α) : | |
surjective (eval a : (Π a, β a) → β a) := | |
λ b, ⟨@update _ _ (classical.dec_eq α) (λ a, (h a).some) a b, | |
@update_same _ _ (classical.dec_eq α) _ _ _⟩ | |
lemma update_injective (f : Πa, β a) (a' : α) : injective (update f a') := | |
λ v v' h, have _ := congr_fun h a', by rwa [update_same, update_same] at this | |
@[simp] lemma update_noteq {a a' : α} (h : a ≠ a') (v : β a') (f : Πa, β a) : | |
update f a' v a = f a := | |
dif_neg h | |
lemma forall_update_iff (f : Π a, β a) {a : α} {b : β a} (p : Π a, β a → Prop) : | |
(∀ x, p x (update f a b x)) ↔ p a b ∧ ∀ x ≠ a, p x (f x) := | |
by { rw [← and_forall_ne a, update_same], simp { contextual := tt } } | |
lemma exists_update_iff (f : Π a, β a) {a : α} {b : β a} (p : Π a, β a → Prop) : | |
(∃ x, p x (update f a b x)) ↔ p a b ∨ ∃ x ≠ a, p x (f x) := | |
by { rw [← not_forall_not, forall_update_iff f (λ a b, ¬p a b)], simp [not_and_distrib] } | |
lemma update_eq_iff {a : α} {b : β a} {f g : Π a, β a} : | |
update f a b = g ↔ b = g a ∧ ∀ x ≠ a, f x = g x := | |
funext_iff.trans $ forall_update_iff _ (λ x y, y = g x) | |
lemma eq_update_iff {a : α} {b : β a} {f g : Π a, β a} : | |
g = update f a b ↔ g a = b ∧ ∀ x ≠ a, g x = f x := | |
funext_iff.trans $ forall_update_iff _ (λ x y, g x = y) | |
@[simp] lemma update_eq_self (a : α) (f : Πa, β a) : update f a (f a) = f := | |
update_eq_iff.2 ⟨rfl, λ _ _, rfl⟩ | |
lemma update_comp_eq_of_forall_ne' {α'} (g : Π a, β a) {f : α' → α} {i : α} (a : β i) | |
(h : ∀ x, f x ≠ i) : | |
(λ j, (update g i a) (f j)) = (λ j, g (f j)) := | |
funext $ λ x, update_noteq (h _) _ _ | |
/-- Non-dependent version of `function.update_comp_eq_of_forall_ne'` -/ | |
lemma update_comp_eq_of_forall_ne {α β : Sort*} (g : α' → β) {f : α → α'} {i : α'} (a : β) | |
(h : ∀ x, f x ≠ i) : | |
(update g i a) ∘ f = g ∘ f := | |
update_comp_eq_of_forall_ne' g a h | |
lemma update_comp_eq_of_injective' (g : Π a, β a) {f : α' → α} (hf : function.injective f) | |
(i : α') (a : β (f i)) : | |
(λ j, update g (f i) a (f j)) = update (λ i, g (f i)) i a := | |
eq_update_iff.2 ⟨update_same _ _ _, λ j hj, update_noteq (hf.ne hj) _ _⟩ | |
/-- Non-dependent version of `function.update_comp_eq_of_injective'` -/ | |
lemma update_comp_eq_of_injective {β : Sort*} (g : α' → β) {f : α → α'} | |
(hf : function.injective f) (i : α) (a : β) : | |
(function.update g (f i) a) ∘ f = function.update (g ∘ f) i a := | |
update_comp_eq_of_injective' g hf i a | |
lemma apply_update {ι : Sort*} [decidable_eq ι] {α β : ι → Sort*} | |
(f : Π i, α i → β i) (g : Π i, α i) (i : ι) (v : α i) (j : ι) : | |
f j (update g i v j) = update (λ k, f k (g k)) i (f i v) j := | |
begin | |
by_cases h : j = i, | |
{ subst j, simp }, | |
{ simp [h] } | |
end | |
lemma apply_update₂ {ι : Sort*} [decidable_eq ι] {α β γ : ι → Sort*} | |
(f : Π i, α i → β i → γ i) (g : Π i, α i) (h : Π i, β i) (i : ι) (v : α i) (w : β i) (j : ι) : | |
f j (update g i v j) (update h i w j) = update (λ k, f k (g k) (h k)) i (f i v w) j := | |
begin | |
by_cases h : j = i, | |
{ subst j, simp }, | |
{ simp [h] } | |
end | |
lemma comp_update {α' : Sort*} {β : Sort*} (f : α' → β) (g : α → α') (i : α) (v : α') : | |
f ∘ (update g i v) = update (f ∘ g) i (f v) := | |
funext $ apply_update _ _ _ _ | |
theorem update_comm {α} [decidable_eq α] {β : α → Sort*} | |
{a b : α} (h : a ≠ b) (v : β a) (w : β b) (f : Πa, β a) : | |
update (update f a v) b w = update (update f b w) a v := | |
begin | |
funext c, simp only [update], | |
by_cases h₁ : c = b; by_cases h₂ : c = a; try {simp [h₁, h₂]}, | |
cases h (h₂.symm.trans h₁), | |
end | |
@[simp] theorem update_idem {α} [decidable_eq α] {β : α → Sort*} | |
{a : α} (v w : β a) (f : Πa, β a) : update (update f a v) a w = update f a w := | |
by {funext b, by_cases b = a; simp [update, h]} | |
end update | |
section extend | |
noncomputable theory | |
local attribute [instance, priority 10] classical.prop_decidable | |
variables {α β γ : Sort*} {f : α → β} | |
/-- `extend f g e'` extends a function `g : α → γ` | |
along a function `f : α → β` to a function `β → γ`, | |
by using the values of `g` on the range of `f` | |
and the values of an auxiliary function `e' : β → γ` elsewhere. | |
Mostly useful when `f` is injective. -/ | |
def extend (f : α → β) (g : α → γ) (e' : β → γ) : β → γ := | |
λ b, if h : ∃ a, f a = b then g (classical.some h) else e' b | |
lemma extend_def (f : α → β) (g : α → γ) (e' : β → γ) (b : β) [decidable (∃ a, f a = b)] : | |
extend f g e' b = if h : ∃ a, f a = b then g (classical.some h) else e' b := | |
by { unfold extend, congr } | |
@[simp] lemma extend_apply (hf : injective f) (g : α → γ) (e' : β → γ) (a : α) : | |
extend f g e' (f a) = g a := | |
begin | |
simp only [extend_def, dif_pos, exists_apply_eq_apply], | |
exact congr_arg g (hf $ classical.some_spec (exists_apply_eq_apply f a)) | |
end | |
@[simp] lemma extend_apply' (g : α → γ) (e' : β → γ) (b : β) (hb : ¬∃ a, f a = b) : | |
extend f g e' b = e' b := | |
by simp [function.extend_def, hb] | |
lemma apply_extend {δ} (hf : injective f) (F : γ → δ) (g : α → γ) (e' : β → γ) (b : β) : | |
F (extend f g e' b) = extend f (F ∘ g) (F ∘ e') b := | |
begin | |
by_cases hb : ∃ a, f a = b, | |
{ cases hb with a ha, subst b, | |
rw [extend_apply hf, extend_apply hf] }, | |
{ rw [extend_apply' _ _ _ hb, extend_apply' _ _ _ hb] } | |
end | |
lemma extend_injective (hf : injective f) (e' : β → γ) : | |
injective (λ g, extend f g e') := | |
begin | |
intros g₁ g₂ hg, | |
refine funext (λ x, _), | |
have H := congr_fun hg (f x), | |
simp only [hf, extend_apply] at H, | |
exact H | |
end | |
@[simp] lemma extend_comp (hf : injective f) (g : α → γ) (e' : β → γ) : | |
extend f g e' ∘ f = g := | |
funext $ λ a, extend_apply hf g e' a | |
lemma injective.surjective_comp_right' (hf : injective f) (g₀ : β → γ) : | |
surjective (λ g : β → γ, g ∘ f) := | |
λ g, ⟨extend f g g₀, extend_comp hf _ _⟩ | |
lemma injective.surjective_comp_right [nonempty γ] (hf : injective f) : | |
surjective (λ g : β → γ, g ∘ f) := | |
hf.surjective_comp_right' (λ _, classical.choice ‹_›) | |
lemma bijective.comp_right (hf : bijective f) : | |
bijective (λ g : β → γ, g ∘ f) := | |
⟨hf.surjective.injective_comp_right, | |
λ g, ⟨g ∘ surj_inv hf.surjective, | |
by simp only [comp.assoc g _ f, (left_inverse_surj_inv hf).comp_eq_id, comp.right_id]⟩⟩ | |
end extend | |
lemma uncurry_def {α β γ} (f : α → β → γ) : uncurry f = (λp, f p.1 p.2) := | |
rfl | |
@[simp] lemma uncurry_apply_pair {α β γ} (f : α → β → γ) (x : α) (y : β) : | |
uncurry f (x, y) = f x y := | |
rfl | |
@[simp] lemma curry_apply {α β γ} (f : α × β → γ) (x : α) (y : β) : | |
curry f x y = f (x, y) := | |
rfl | |
section bicomp | |
variables {α β γ δ ε : Type*} | |
/-- Compose a binary function `f` with a pair of unary functions `g` and `h`. | |
If both arguments of `f` have the same type and `g = h`, then `bicompl f g g = f on g`. -/ | |
def bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) (a b) := | |
f (g a) (h b) | |
/-- Compose an unary function `f` with a binary function `g`. -/ | |
def bicompr (f : γ → δ) (g : α → β → γ) (a b) := | |
f (g a b) | |
-- Suggested local notation: | |
local notation f `∘₂` g := bicompr f g | |
lemma uncurry_bicompr (f : α → β → γ) (g : γ → δ) : | |
uncurry (g ∘₂ f) = (g ∘ uncurry f) := rfl | |
lemma uncurry_bicompl (f : γ → δ → ε) (g : α → γ) (h : β → δ) : | |
uncurry (bicompl f g h) = (uncurry f) ∘ (prod.map g h) := | |
rfl | |
end bicomp | |
section uncurry | |
variables {α β γ δ : Type*} | |
/-- Records a way to turn an element of `α` into a function from `β` to `γ`. The most generic use | |
is to recursively uncurry. For instance `f : α → β → γ → δ` will be turned into | |
`↿f : α × β × γ → δ`. One can also add instances for bundled maps. -/ | |
class has_uncurry (α : Type*) (β : out_param Type*) (γ : out_param Type*) := (uncurry : α → (β → γ)) | |
/-- Uncurrying operator. The most generic use is to recursively uncurry. For instance | |
`f : α → β → γ → δ` will be turned into `↿f : α × β × γ → δ`. One can also add instances | |
for bundled maps.-/ | |
add_decl_doc has_uncurry.uncurry | |
notation `↿`:max x:max := has_uncurry.uncurry x | |
instance has_uncurry_base : has_uncurry (α → β) α β := ⟨id⟩ | |
instance has_uncurry_induction [has_uncurry β γ δ] : has_uncurry (α → β) (α × γ) δ := | |
⟨λ f p, ↿(f p.1) p.2⟩ | |
end uncurry | |
/-- A function is involutive, if `f ∘ f = id`. -/ | |
def involutive {α} (f : α → α) : Prop := ∀ x, f (f x) = x | |
lemma involutive_iff_iter_2_eq_id {α} {f : α → α} : involutive f ↔ (f^[2] = id) := | |
funext_iff.symm | |
namespace involutive | |
variables {α : Sort u} {f : α → α} (h : involutive f) | |
include h | |
@[simp] | |
lemma comp_self : f ∘ f = id := funext h | |
protected lemma left_inverse : left_inverse f f := h | |
protected lemma right_inverse : right_inverse f f := h | |
protected lemma injective : injective f := h.left_inverse.injective | |
protected lemma surjective : surjective f := λ x, ⟨f x, h x⟩ | |
protected lemma bijective : bijective f := ⟨h.injective, h.surjective⟩ | |
/-- Involuting an `ite` of an involuted value `x : α` negates the `Prop` condition in the `ite`. -/ | |
protected lemma ite_not (P : Prop) [decidable P] (x : α) : | |
f (ite P x (f x)) = ite (¬ P) x (f x) := | |
by rw [apply_ite f, h, ite_not] | |
/-- An involution commutes across an equality. Compare to `function.injective.eq_iff`. -/ | |
protected lemma eq_iff {x y : α} : f x = y ↔ x = f y := | |
h.injective.eq_iff' (h y) | |
end involutive | |
/-- The property of a binary function `f : α → β → γ` being injective. | |
Mathematically this should be thought of as the corresponding function `α × β → γ` being injective. | |
-/ | |
def injective2 {α β γ} (f : α → β → γ) : Prop := | |
∀ ⦃a₁ a₂ b₁ b₂⦄, f a₁ b₁ = f a₂ b₂ → a₁ = a₂ ∧ b₁ = b₂ | |
namespace injective2 | |
variables {α β γ : Sort*} {f : α → β → γ} | |
/-- A binary injective function is injective when only the left argument varies. -/ | |
protected lemma left (hf : injective2 f) (b : β) : function.injective (λ a, f a b) := | |
λ a₁ a₂ h, (hf h).left | |
/-- A binary injective function is injective when only the right argument varies. -/ | |
protected lemma right (hf : injective2 f) (a : α) : function.injective (f a) := | |
λ a₁ a₂ h, (hf h).right | |
protected lemma uncurry {α β γ : Type*} {f : α → β → γ} (hf : injective2 f) : | |
function.injective (uncurry f) := | |
λ ⟨a₁, b₁⟩ ⟨a₂, b₂⟩ h, and.elim (hf h) (congr_arg2 _) | |
/-- As a map from the left argument to a unary function, `f` is injective. -/ | |
lemma left' (hf : injective2 f) [nonempty β] : function.injective f := | |
λ a₁ a₂ h, let ⟨b⟩ := ‹nonempty β› in hf.left b $ (congr_fun h b : _) | |
/-- As a map from the right argument to a unary function, `f` is injective. -/ | |
lemma right' (hf : injective2 f) [nonempty α] : function.injective (λ b a, f a b) := | |
λ b₁ b₂ h, let ⟨a⟩ := ‹nonempty α› in hf.right a $ (congr_fun h a : _) | |
lemma eq_iff (hf : injective2 f) {a₁ a₂ b₁ b₂} : f a₁ b₁ = f a₂ b₂ ↔ a₁ = a₂ ∧ b₁ = b₂ := | |
⟨λ h, hf h, and.rec $ congr_arg2 f⟩ | |
end injective2 | |
section sometimes | |
local attribute [instance, priority 10] classical.prop_decidable | |
/-- `sometimes f` evaluates to some value of `f`, if it exists. This function is especially | |
interesting in the case where `α` is a proposition, in which case `f` is necessarily a | |
constant function, so that `sometimes f = f a` for all `a`. -/ | |
noncomputable def sometimes {α β} [nonempty β] (f : α → β) : β := | |
if h : nonempty α then f (classical.choice h) else classical.choice ‹_› | |
theorem sometimes_eq {p : Prop} {α} [nonempty α] (f : p → α) (a : p) : sometimes f = f a := | |
dif_pos ⟨a⟩ | |
theorem sometimes_spec {p : Prop} {α} [nonempty α] | |
(P : α → Prop) (f : p → α) (a : p) (h : P (f a)) : P (sometimes f) := | |
by rwa sometimes_eq | |
end sometimes | |
end function | |
/-- `s.piecewise f g` is the function equal to `f` on the set `s`, and to `g` on its complement. -/ | |
def set.piecewise {α : Type u} {β : α → Sort v} (s : set α) (f g : Πi, β i) | |
[∀j, decidable (j ∈ s)] : | |
Πi, β i := | |
λi, if i ∈ s then f i else g i | |
/-! ### Bijectivity of `eq.rec`, `eq.mp`, `eq.mpr`, and `cast` -/ | |
lemma eq_rec_on_bijective {α : Sort*} {C : α → Sort*} : | |
∀ {a a' : α} (h : a = a'), function.bijective (@eq.rec_on _ _ C _ h) | |
| _ _ rfl := ⟨λ x y, id, λ x, ⟨x, rfl⟩⟩ | |
lemma eq_mp_bijective {α β : Sort*} (h : α = β) : function.bijective (eq.mp h) := | |
eq_rec_on_bijective h | |
lemma eq_mpr_bijective {α β : Sort*} (h : α = β) : function.bijective (eq.mpr h) := | |
eq_rec_on_bijective h.symm | |
lemma cast_bijective {α β : Sort*} (h : α = β) : function.bijective (cast h) := | |
eq_rec_on_bijective h | |
/-! Note these lemmas apply to `Type*` not `Sort*`, as the latter interferes with `simp`, and | |
is trivial anyway.-/ | |
@[simp] | |
lemma eq_rec_inj {α : Sort*} {a a' : α} (h : a = a') {C : α → Type*} (x y : C a) : | |
(eq.rec x h : C a') = eq.rec y h ↔ x = y := | |
(eq_rec_on_bijective h).injective.eq_iff | |
@[simp] | |
lemma cast_inj {α β : Type*} (h : α = β) {x y : α} : cast h x = cast h y ↔ x = y := | |
(cast_bijective h).injective.eq_iff | |
lemma function.left_inverse.eq_rec_eq {α β : Sort*} {γ : β → Sort v} {f : α → β} {g : β → α} | |
(h : function.left_inverse g f) (C : Π a : α, γ (f a)) (a : α) : | |
(congr_arg f (h a)).rec (C (g (f a))) = C a := | |
eq_of_heq $ (eq_rec_heq _ _).trans $ by rw h | |
lemma function.left_inverse.eq_rec_on_eq {α β : Sort*} {γ : β → Sort v} {f : α → β} {g : β → α} | |
(h : function.left_inverse g f) (C : Π a : α, γ (f a)) (a : α) : | |
(congr_arg f (h a)).rec_on (C (g (f a))) = C a := | |
h.eq_rec_eq _ _ | |
lemma function.left_inverse.cast_eq {α β : Sort*} {γ : β → Sort v} {f : α → β} {g : β → α} | |
(h : function.left_inverse g f) (C : Π a : α, γ (f a)) (a : α) : | |
cast (congr_arg (λ a, γ (f a)) (h a)) (C (g (f a))) = C a := | |
eq_of_heq $ (eq_rec_heq _ _).trans $ by rw h | |
/-- A set of functions "separates points" | |
if for each pair of distinct points there is a function taking different values on them. -/ | |
def set.separates_points {α β : Type*} (A : set (α → β)) : Prop := | |
∀ ⦃x y : α⦄, x ≠ y → ∃ f ∈ A, (f x : β) ≠ f y | |
lemma is_symm_op.flip_eq {α β} (op) [is_symm_op α β op] : flip op = op := | |
funext $ λ a, funext $ λ b, (is_symm_op.symm_op a b).symm | |
lemma inv_image.equivalence {α : Sort u} {β : Sort v} (r : β → β → Prop) (f : α → β) | |
(h : equivalence r) : equivalence (inv_image r f) := | |
⟨λ _, h.1 _, λ _ _ x, h.2.1 x, inv_image.trans r f h.2.2⟩ | |